mp-02's picture
Update README.md
0153a29 verified
|
raw
history blame
3.12 kB
metadata
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - mp-02/cord
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-base-cord2
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/cord
          type: mp-02/cord
        metrics:
          - name: Precision
            type: precision
            value: 0.9466882067851373
          - name: Recall
            type: recall
            value: 0.9614438063986874
          - name: F1
            type: f1
            value: 0.9540089540089539
          - name: Accuracy
            type: accuracy
            value: 0.9611161939615737

layoutlmv3-base-cord2

This model is a fine-tuned version of microsoft/layoutlmv3-base on the mp-02/cord dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1856
  • Precision: 0.9467
  • Recall: 0.9614
  • F1: 0.9540
  • Accuracy: 0.9611

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 3000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 100 1.2612 0.6788 0.7629 0.7184 0.7685
No log 2.0 200 0.5621 0.8674 0.8802 0.8738 0.8916
No log 3.0 300 0.3639 0.8846 0.9114 0.8978 0.9186
No log 4.0 400 0.3197 0.9153 0.9393 0.9271 0.9410
0.8719 5.0 500 0.2304 0.9357 0.9549 0.9452 0.9543
0.8719 6.0 600 0.2069 0.9389 0.9573 0.9480 0.9556
0.8719 7.0 700 0.2081 0.9459 0.9606 0.9532 0.9593
0.8719 8.0 800 0.1901 0.9532 0.9688 0.9609 0.9666
0.8719 9.0 900 0.1559 0.9515 0.9647 0.9580 0.9671
0.136 10.0 1000 0.1856 0.9467 0.9614 0.9540 0.9611
0.136 11.0 1100 0.2020 0.9537 0.9631 0.9584 0.9629
0.136 12.0 1200 0.1908 0.9552 0.9631 0.9592 0.9620

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3