|
--- |
|
license: bigscience-bloom-rail-1.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bloom-560m-finetuned-the-stack-brainfuck |
|
results: [] |
|
|
|
widget: |
|
- text: " |
|
>+++++++++[<++++++++>-]<.>+++++++[<++++>-]<+.+++++++..+++.[-]>++++++++[<++++>-] |
|
<.>+++++++++++[<++++++++>-]<-.--------.+++.-[.>>+>+<<<-]>>>" |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bloom-560m-finetuned-the-stack-brainfuck |
|
|
|
This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2112 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.3877 | 0.1 | 200 | 1.8023 | |
|
| 1.2576 | 0.19 | 400 | 1.7121 | |
|
| 1.1452 | 0.29 | 600 | 1.5469 | |
|
| 1.1503 | 0.39 | 800 | 1.6261 | |
|
| 1.0287 | 0.48 | 1000 | 1.5097 | |
|
| 1.0118 | 0.58 | 1200 | 1.4398 | |
|
| 1.0466 | 0.67 | 1400 | 1.4267 | |
|
| 0.9531 | 0.77 | 1600 | 1.4130 | |
|
| 0.8891 | 0.87 | 1800 | 1.4026 | |
|
| 0.9163 | 0.96 | 2000 | 1.4003 | |
|
| 0.7207 | 1.06 | 2200 | 1.3758 | |
|
| 0.7041 | 1.16 | 2400 | 1.3364 | |
|
| 0.7065 | 1.25 | 2600 | 1.3095 | |
|
| 0.7316 | 1.35 | 2800 | 1.2959 | |
|
| 0.6817 | 1.45 | 3000 | 1.2682 | |
|
| 0.6926 | 1.54 | 3200 | 1.2567 | |
|
| 0.6511 | 1.64 | 3400 | 1.2416 | |
|
| 0.6819 | 1.73 | 3600 | 1.2263 | |
|
| 0.6422 | 1.83 | 3800 | 1.2206 | |
|
| 0.6392 | 1.93 | 4000 | 1.2112 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.5.1 |
|
- Tokenizers 0.13.0 |
|
|