lewtun's picture
lewtun HF staff
Add evaluation results on the qnli config of glue
b044405
|
raw
history blame
2.61 kB
metadata
language:
  - en
license: mit
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: deberta-v3-small
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE QNLI
          type: glue
          args: qnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9150649826102873
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: qnli
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.914881933003844
            verified: true
          - name: Precision
            type: precision
            value: 0.9195906432748538
            verified: true
          - name: Recall
            type: recall
            value: 0.9112640347700108
            verified: true
          - name: AUC
            type: auc
            value: 0.9718281171793548
            verified: true
          - name: F1
            type: f1
            value: 0.9154084045843187
            verified: true
          - name: loss
            type: loss
            value: 0.21421395242214203
            verified: true

DeBERTa-v3-small fine-tuned on QNLI

This model is a fine-tuned version of microsoft/deberta-v3-small on the GLUE QNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2143
  • Accuracy: 0.9151

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2823 1.0 6547 0.2143 0.9151
0.1996 2.0 13094 0.2760 0.9103
0.1327 3.0 19641 0.3293 0.9169
0.0811 4.0 26188 0.4278 0.9193
0.05 5.0 32735 0.5110 0.9176

Framework versions

  • Transformers 4.13.0.dev0
  • Pytorch 1.10.0+cu111
  • Datasets 1.16.1
  • Tokenizers 0.10.3