layoutlm-funsd / README.md
navakanth-reddy's picture
End of training
5e5cff5
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7080
  • Answer: {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809}
  • Header: {'precision': 0.3359375, 'recall': 0.36134453781512604, 'f1': 0.3481781376518218, 'number': 119}
  • Question: {'precision': 0.7817531305903399, 'recall': 0.8206572769953052, 'f1': 0.8007329363261567, 'number': 1065}
  • Overall Precision: 0.7260
  • Overall Recall: 0.7842
  • Overall F1: 0.7540
  • Overall Accuracy: 0.8073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.4164 1.0 10 1.1867 {'precision': 0.21566110397946084, 'recall': 0.207663782447466, 'f1': 0.21158690176322417, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.48124557678697805, 'recall': 0.6384976525821596, 'f1': 0.5488297013720743, 'number': 1065} 0.3869 0.4255 0.4053 0.6139
1.0235 2.0 20 0.8815 {'precision': 0.578494623655914, 'recall': 0.6650185414091471, 'f1': 0.6187464059804485, 'number': 809} {'precision': 0.05555555555555555, 'recall': 0.008403361344537815, 'f1': 0.014598540145985401, 'number': 119} {'precision': 0.6398687448728466, 'recall': 0.7323943661971831, 'f1': 0.6830122591943958, 'number': 1065} 0.6087 0.6618 0.6341 0.7403
0.7822 3.0 30 0.7564 {'precision': 0.6335403726708074, 'recall': 0.7564894932014833, 'f1': 0.6895774647887324, 'number': 809} {'precision': 0.13559322033898305, 'recall': 0.06722689075630252, 'f1': 0.0898876404494382, 'number': 119} {'precision': 0.6905158069883528, 'recall': 0.7793427230046949, 'f1': 0.7322452580502868, 'number': 1065} 0.6511 0.7275 0.6872 0.7697
0.6495 4.0 40 0.6955 {'precision': 0.6533333333333333, 'recall': 0.7873918417799752, 'f1': 0.7141255605381165, 'number': 809} {'precision': 0.19480519480519481, 'recall': 0.12605042016806722, 'f1': 0.15306122448979592, 'number': 119} {'precision': 0.7162276975361087, 'recall': 0.7915492957746478, 'f1': 0.752007136485281, 'number': 1065} 0.6707 0.7501 0.7082 0.7915
0.5641 5.0 50 0.6796 {'precision': 0.6843267108167771, 'recall': 0.7663782447466008, 'f1': 0.7230320699708457, 'number': 809} {'precision': 0.275, 'recall': 0.18487394957983194, 'f1': 0.22110552763819097, 'number': 119} {'precision': 0.7565217391304347, 'recall': 0.8169014084507042, 'f1': 0.7855530474040633, 'number': 1065} 0.7079 0.7587 0.7324 0.7899
0.4862 6.0 60 0.6563 {'precision': 0.6844978165938864, 'recall': 0.7750309023485785, 'f1': 0.7269565217391305, 'number': 809} {'precision': 0.28, 'recall': 0.23529411764705882, 'f1': 0.2557077625570776, 'number': 119} {'precision': 0.7420168067226891, 'recall': 0.8291079812206573, 'f1': 0.7831485587583149, 'number': 1065} 0.6972 0.7717 0.7326 0.8007
0.4389 7.0 70 0.6444 {'precision': 0.6868365180467091, 'recall': 0.799752781211372, 'f1': 0.7390062821245003, 'number': 809} {'precision': 0.28703703703703703, 'recall': 0.2605042016806723, 'f1': 0.27312775330396477, 'number': 119} {'precision': 0.7411167512690355, 'recall': 0.8225352112676056, 'f1': 0.7797062750333779, 'number': 1065} 0.6962 0.7797 0.7356 0.8040
0.3912 8.0 80 0.6505 {'precision': 0.7074527252502781, 'recall': 0.7861557478368356, 'f1': 0.7447306791569087, 'number': 809} {'precision': 0.3392857142857143, 'recall': 0.31932773109243695, 'f1': 0.32900432900432897, 'number': 119} {'precision': 0.7689594356261023, 'recall': 0.8187793427230047, 'f1': 0.793087767166894, 'number': 1065} 0.7207 0.7757 0.7472 0.8073
0.3511 9.0 90 0.6696 {'precision': 0.7147577092511013, 'recall': 0.8022249690976514, 'f1': 0.7559697146185206, 'number': 809} {'precision': 0.296, 'recall': 0.31092436974789917, 'f1': 0.30327868852459017, 'number': 119} {'precision': 0.7589833479404031, 'recall': 0.8131455399061033, 'f1': 0.7851314596554851, 'number': 1065} 0.7139 0.7787 0.7449 0.8042
0.3166 10.0 100 0.6746 {'precision': 0.7190265486725663, 'recall': 0.8034610630407911, 'f1': 0.7589025102159953, 'number': 809} {'precision': 0.35398230088495575, 'recall': 0.33613445378151263, 'f1': 0.3448275862068966, 'number': 119} {'precision': 0.7753108348134992, 'recall': 0.819718309859155, 'f1': 0.7968963943404839, 'number': 1065} 0.7294 0.7842 0.7558 0.8081
0.2925 11.0 110 0.6839 {'precision': 0.7160356347438753, 'recall': 0.7948084054388134, 'f1': 0.753368482718219, 'number': 809} {'precision': 0.3208955223880597, 'recall': 0.36134453781512604, 'f1': 0.33992094861660077, 'number': 119} {'precision': 0.7803780378037803, 'recall': 0.8140845070422535, 'f1': 0.796875, 'number': 1065} 0.7247 0.7792 0.7510 0.8087
0.2837 12.0 120 0.6853 {'precision': 0.7161862527716186, 'recall': 0.7985166872682324, 'f1': 0.7551139684395091, 'number': 809} {'precision': 0.3333333333333333, 'recall': 0.3445378151260504, 'f1': 0.33884297520661155, 'number': 119} {'precision': 0.7751322751322751, 'recall': 0.8253521126760563, 'f1': 0.7994542974079127, 'number': 1065} 0.7253 0.7858 0.7543 0.8064
0.265 13.0 130 0.7016 {'precision': 0.7069154774972558, 'recall': 0.796044499381953, 'f1': 0.7488372093023256, 'number': 809} {'precision': 0.31654676258992803, 'recall': 0.3697478991596639, 'f1': 0.3410852713178294, 'number': 119} {'precision': 0.7867513611615246, 'recall': 0.8140845070422535, 'f1': 0.8001845869866173, 'number': 1065} 0.7226 0.7802 0.7503 0.8076
0.2475 14.0 140 0.7055 {'precision': 0.7084708470847084, 'recall': 0.796044499381953, 'f1': 0.749708963911525, 'number': 809} {'precision': 0.32575757575757575, 'recall': 0.36134453781512604, 'f1': 0.3426294820717131, 'number': 119} {'precision': 0.771806167400881, 'recall': 0.8225352112676056, 'f1': 0.7963636363636363, 'number': 1065} 0.7183 0.7842 0.7498 0.8054
0.2423 15.0 150 0.7080 {'precision': 0.7122381477398015, 'recall': 0.7985166872682324, 'f1': 0.752913752913753, 'number': 809} {'precision': 0.3359375, 'recall': 0.36134453781512604, 'f1': 0.3481781376518218, 'number': 119} {'precision': 0.7817531305903399, 'recall': 0.8206572769953052, 'f1': 0.8007329363261567, 'number': 1065} 0.7260 0.7842 0.7540 0.8073

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1