|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
pipeline_tag: text-generation |
|
license: mit |
|
license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE |
|
base_model: microsoft/Phi-3.5-mini-instruct |
|
--- |
|
|
|
# Phi-3.5-mini-instruct-FP8-KV |
|
|
|
## Model Overview |
|
- **Model Architecture:** Phi-3.5 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat. |
|
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. |
|
- **Release Date:** 8/11/2024 |
|
- **Version:** 1.1 |
|
- **License(s):** [mit](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE) |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct), with the new configuration files. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations of [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) to FP8 data type, ready for inference with vLLM >= 0.5.1. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. |
|
|
|
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations. |
|
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = "neuralmagic/Phi-3.5-mini-instruct-FP8-KV" |
|
|
|
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you? Remember to respond in pirate speak!"}, |
|
] |
|
|
|
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
llm = LLM(model=model_id, kv_cache_dtype="fp8") |
|
|
|
outputs = llm.generate(prompts, sampling_params) |
|
|
|
generated_text = outputs[0].outputs[0].text |
|
print(generated_text) |
|
``` |
|
|
|
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created by applying [LLM Compressor with calibration samples from UltraChat](https://github.com/vllm-project/llm-compressor/blob/sa/big_model_support/examples/big_model_offloading/big_model_w8a8_calibrate.py), as presented in the code snipet below. |
|
|
|
```python |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
|
|
|
# Select model and load it. |
|
# Phi-3.5 is a special case for KV cache quantization because it has |
|
# fused QKV linear layers. |
|
MODEL_ID = "microsoft/Phi-3.5-mini-instruct" |
|
model = SparseAutoModelForCausalLM.from_pretrained( |
|
MODEL_ID, |
|
device_map="auto", |
|
torch_dtype="auto", |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
|
|
|
# Select calibration dataset. |
|
DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
|
DATASET_SPLIT = "train_sft" |
|
|
|
# Select number of samples. 512 samples is a good place to start. |
|
# Increasing the number of samples can improve accuracy. |
|
NUM_CALIBRATION_SAMPLES = 512 |
|
MAX_SEQUENCE_LENGTH = 2048 |
|
|
|
# Load dataset and preprocess. |
|
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
|
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
|
|
|
|
|
def process_and_tokenize(example): |
|
text = tokenizer.apply_chat_template(example["messages"], tokenize=False) |
|
return tokenizer( |
|
text, |
|
padding=False, |
|
max_length=MAX_SEQUENCE_LENGTH, |
|
truncation=True, |
|
add_special_tokens=False, |
|
) |
|
|
|
|
|
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names) |
|
|
|
# Configure the quantization algorithm and scheme. |
|
# In this case, we: |
|
# * quantize the weights to fp8 with per-tensor scales |
|
# * quantize the activations to fp8 with per-tensor scales |
|
# * quantize the kv cache to fp8 with per-tensor scales |
|
recipe = """ |
|
quant_stage: |
|
quant_modifiers: |
|
QuantizationModifier: |
|
ignore: ["lm_head"] |
|
config_groups: |
|
group_0: |
|
weights: |
|
num_bits: 8 |
|
type: float |
|
strategy: tensor |
|
dynamic: false |
|
symmetric: true |
|
input_activations: |
|
num_bits: 8 |
|
type: float |
|
strategy: tensor |
|
dynamic: false |
|
symmetric: true |
|
targets: ["Linear"] |
|
kv_cache_scheme: |
|
num_bits: 8 |
|
type: float |
|
strategy: tensor |
|
dynamic: false |
|
symmetric: true |
|
""" |
|
|
|
# Apply algorithms. |
|
oneshot( |
|
model=model, |
|
dataset=ds, |
|
recipe=recipe, |
|
max_seq_length=MAX_SEQUENCE_LENGTH, |
|
num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
|
) |
|
|
|
# Confirm generations of the quantized model look sane. |
|
print("\n\n") |
|
print("========== SAMPLE GENERATION ==============") |
|
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") |
|
output = model.generate(input_ids, max_new_tokens=100) |
|
print(tokenizer.decode(output[0])) |
|
print("==========================================\n\n") |
|
|
|
# Save to disk compressed. |
|
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV" |
|
model.save_pretrained(SAVE_DIR, save_compressed=True) |
|
tokenizer.save_pretrained(SAVE_DIR) |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Phi-3.5-mini-instruct-FP8-KV",kv_cache_dtype="fp8",gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096 \ |
|
--tasks openllm \ |
|
--batch_size auto |
|
``` |
|
|
|
### Accuracy |
|
|
|
#### Open LLM Leaderboard evaluation scores |
|
<table> |
|
<tr> |
|
<td><strong>Benchmark</strong> |
|
</td> |
|
<td><strong>Phi-3.5-mini-instruct</strong> |
|
</td> |
|
<td><strong>Phi-3.5-mini-instruct-FP8-KV(this model)</strong> |
|
</td> |
|
<td><strong>Recovery</strong> |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot) |
|
</td> |
|
<td>68.81 |
|
</td> |
|
<td>68.56 |
|
</td> |
|
<td>99.64% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>ARC Challenge (25-shot, acc_norm) |
|
</td> |
|
<td>64.68 |
|
</td> |
|
<td>64.51 |
|
</td> |
|
<td>99.74% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>GSM-8K (5-shot, strict-match) |
|
</td> |
|
<td>78.24 |
|
</td> |
|
<td>77.26 |
|
</td> |
|
<td>98.75% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Hellaswag (10-shot, acc_norm) |
|
</td> |
|
<td>79.03 |
|
</td> |
|
<td>78.88 |
|
</td> |
|
<td>99.81% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>Winogrande (5-shot, acc) |
|
</td> |
|
<td>73.40 |
|
</td> |
|
<td>73.80 |
|
</td> |
|
<td>100.5% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td>TruthfulQA (0-shot, mc2) |
|
</td> |
|
<td>56.39 |
|
</td> |
|
<td>56.95 |
|
</td> |
|
<td>100.9% |
|
</td> |
|
</tr> |
|
<tr> |
|
<td><strong>Average</strong> |
|
</td> |
|
<td><strong>70.09</strong> |
|
</td> |
|
<td><strong>70.00</strong> |
|
</td> |
|
<td><strong>99.89%</strong> |
|
</td> |
|
</tr> |
|
</table> |
|
|