nguyennghia0902's picture
Update README.md
3fe2464 verified
|
raw
history blame
4.04 kB
metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
  - generated_from_keras_callback
model-index:
  - name: nguyennghia0902/electra-small-discriminator_1e-05_16
    results: []

nguyennghia0902/electra-small-discriminator_1e-05_16

This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 2.2953
  • Train End Logits Accuracy: 0.4633
  • Train Start Logits Accuracy: 0.4286
  • Validation Loss: 2.1111
  • Validation End Logits Accuracy: 0.4964
  • Validation Start Logits Accuracy: 0.4762
  • Epoch: 9
  • {'name': 'project02_google/electra-small-discriminator_1e-05_16', 'lnr': 1e-05, 'epoch': 10, 'batch_size': 16, 'time': 15051.128346920013, 'accuracy': 0, 'f1_score': 0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 31270, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
3.6922 0.2260 0.1855 2.9570 0.3296 0.2955 0
2.9538 0.3373 0.2952 2.6908 0.3760 0.3455 1
2.7599 0.3690 0.3326 2.5323 0.4072 0.3820 2
2.6351 0.3920 0.3568 2.4256 0.4286 0.4008 3
2.5472 0.4089 0.3742 2.3283 0.4498 0.4264 4
2.4725 0.4221 0.3912 2.2602 0.4605 0.4399 5
2.4119 0.4369 0.4017 2.1953 0.4765 0.4559 6
2.3562 0.4505 0.4144 2.1406 0.4888 0.4689 7
2.3220 0.4566 0.4216 2.1207 0.4947 0.4749 8
2.2953 0.4633 0.4286 2.1111 0.4964 0.4762 9

Framework versions

  • Transformers 4.39.3
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2