|
--- |
|
license: apache-2.0 |
|
base_model: google/electra-small-discriminator |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: nguyennghia0902/electra-small-discriminator_1e-05_16 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# nguyennghia0902/electra-small-discriminator_1e-05_16 |
|
|
|
This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 2.2953 |
|
- Train End Logits Accuracy: 0.4633 |
|
- Train Start Logits Accuracy: 0.4286 |
|
- Validation Loss: 2.1111 |
|
- Validation End Logits Accuracy: 0.4964 |
|
- Validation Start Logits Accuracy: 0.4762 |
|
- Epoch: 9 |
|
- {'name': 'project02_google/electra-small-discriminator_1e-05_16', 'lnr': 1e-05, 'epoch': 10, 'batch_size': 16, 'time': 15051.128346920013, 'accuracy': 0, 'f1_score': 0} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 31270, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch | |
|
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:| |
|
| 3.6922 | 0.2260 | 0.1855 | 2.9570 | 0.3296 | 0.2955 | 0 | |
|
| 2.9538 | 0.3373 | 0.2952 | 2.6908 | 0.3760 | 0.3455 | 1 | |
|
| 2.7599 | 0.3690 | 0.3326 | 2.5323 | 0.4072 | 0.3820 | 2 | |
|
| 2.6351 | 0.3920 | 0.3568 | 2.4256 | 0.4286 | 0.4008 | 3 | |
|
| 2.5472 | 0.4089 | 0.3742 | 2.3283 | 0.4498 | 0.4264 | 4 | |
|
| 2.4725 | 0.4221 | 0.3912 | 2.2602 | 0.4605 | 0.4399 | 5 | |
|
| 2.4119 | 0.4369 | 0.4017 | 2.1953 | 0.4765 | 0.4559 | 6 | |
|
| 2.3562 | 0.4505 | 0.4144 | 2.1406 | 0.4888 | 0.4689 | 7 | |
|
| 2.3220 | 0.4566 | 0.4216 | 2.1207 | 0.4947 | 0.4749 | 8 | |
|
| 2.2953 | 0.4633 | 0.4286 | 2.1111 | 0.4964 | 0.4762 | 9 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|