metadata
language:
- ru
- uk
- be
- kk
- az
- hy
- ka
- he
- en
- de
tags:
- language classification
- text segmentation
datasets:
- open_subtitles
- tatoeba
- oscar
RoBERTa for Multilabel Language Segmentation
Training
RoBERTa fine-tuned on small parts of Open Subtitles, Oscar and Tatoeba datasets (~9k samples per language).
Implemented heuristic algorithm for multilingual training data creation with generation of target masks- https://github.com/n1kstep/lang-classifier
data source | language |
---|---|
open_subtitles | ka, he, en, de |
oscar | be, kk, az, hu |
tatoeba | ru, uk |
Validation
The metrics obtained from validation on the another part of dataset (~1k samples per language).
Validation Loss | Precision | Recall | F1-Score | Accuracy |
---|---|---|---|---|
0.029172 | 0.919623 | 0.933586 | 0.926552 | 0.991883 |