|
--- |
|
language: |
|
- ru |
|
- uk |
|
- be |
|
- kk |
|
- az |
|
- hy |
|
- ka |
|
- he |
|
- en |
|
- de |
|
tags: |
|
- language classification |
|
- text segmentation |
|
datasets: |
|
- open_subtitles |
|
- tatoeba |
|
- oscar |
|
--- |
|
|
|
# RoBERTa for Multilabel Language Segmentation |
|
## Training |
|
RoBERTa fine-tuned on small parts of Open Subtitles, Oscar and Tatoeba datasets (~9k samples per language). |
|
|
|
Implemented heuristic algorithm for multilingual training data creation with generation of target masks- https://github.com/n1kstep/lang-classifier |
|
|
|
| data source | language | |
|
|-----------------|----------------| |
|
| open_subtitles | ka, he, en, de | |
|
| oscar | be, kk, az, hu | |
|
| tatoeba | ru, uk | |
|
|
|
## Validation |
|
The metrics obtained from validation on the another part of dataset (~1k samples per language). |
|
|
|
| Validation Loss | Precision | Recall | F1-Score | Accuracy | |
|
|-----------------|-----------|----------|----------|----------| |
|
| 0.029172 | 0.919623 | 0.933586 | 0.926552 | 0.991883 | |