WavTokenizer / README.md
novateur's picture
Update README.md
8040025 verified
|
raw
history blame
5.99 kB
---
license: mit
tags:
- audio-feature-extraction
- speech-language-models
- gpt4-o
- tokenizer
- codec-representation
- text-to-speech
- automatic-speech-recognition
---
# WavTokenizer: SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2408.16532)
[![demo](https://img.shields.io/badge/WanTokenizer-Demo-red)](https://wavtokenizer.github.io/)
[![model](https://img.shields.io/badge/%F0%9F%A4%97%20WavTokenizer-Models-blue)](https://huggingface.co/novateur/WavTokenizer)
### πŸŽ‰πŸŽ‰ with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second!
### πŸŽ‰πŸŽ‰ with WavTokenizer, You can get strong reconstruction results.
### πŸŽ‰πŸŽ‰ WavTokenizer owns rich semantic information and is build for audio language models such as GPT4-o.
# πŸ”₯ News
- *2024.08*: We release WavTokenizer on arxiv.
![result](result.png)
## Installation
To use WavTokenizer, install it using:
```bash
conda create -n wavtokenizer python=3.9
conda activate wavtokenizer
pip install -r requirements.txt
```
## Infer
### Part1: Reconstruct audio from raw wav
```python
from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer
device=torch.device('cpu')
config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
audio_outpath = "xxx"
wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)
wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1)
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)
torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16)
```
### Part2: Generating discrete codecs
```python
from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer
device=torch.device('cpu')
config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)
wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1)
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
_,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
print(discrete_code)
```
### Part3: Audio reconstruction through codecs
```python
# audio_tokens [n_q,1,t]/[n_q,t]
features = wavtokenizer.codes_to_features(audio_tokens)
bandwidth_id = torch.tensor([0])
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)
```
## Available models
πŸ€— links to the Huggingface model hub.
| Model name | HuggingFace | Corpus | Token/s | Domain | Open-Source |
|:--------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------:|:---------:|:----------:|:------:|
| WavTokenizer-small-600-24k-4096 | [πŸ€—](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_600_24k_4096.ckpt) | LibriTTS | 40 | Speech | √ |
| WavTokenizer-small-320-24k-4096 | [πŸ€—](https://huggingface.co/novateur/WavTokenizer/blob/main/WavTokenizer_small_320_24k_4096.ckpt) | LibriTTS | 75 | Speech | √|
| WavTokenizer-medium-600-24k-4096 | [πŸ€—](https://github.com/jishengpeng/wavtokenizer) | 10000 Hours | 40 | Speech, Audio, Music | Coming Soon|
| WavTokenizer-medium-320-24k-4096 | [πŸ€—](https://github.com/jishengpeng/wavtokenizer) | 10000 Hours | 75 | Speech, Audio, Music | Coming Soon|
| WavTokenizer-large-600-24k-4096 | [πŸ€—](https://github.com/jishengpeng/wavtokenizer) | 80000 Hours | 40 | Speech, Audio, Music | Coming Soon|
| WavTokenizer-large-320-24k-4096 | [πŸ€—](https://github.com/jishengpeng/wavtokenizer) | 80000 Hours | 75 | Speech, Audio, Music | Coming Soon |
## Training
### Step1: Prepare train dataset
```python
# Process the data into a form similar to ./data/demo.txt
```
### Step2: Modifying configuration files
```python
# ./configs/xxx.yaml
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device
```
### Step3: Start training process
Refer to [Pytorch Lightning documentation](https://lightning.ai/docs/pytorch/stable/) for details about customizing the
training pipeline.
```bash
cd ./WavTokenizer
python train.py fit --config ./configs/xxx.yaml
```
## Citation
If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer:
```
@article{ji2024wavtokenizer,
title={WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling},
author={Ji, Shengpeng and Jiang, Ziyue and Cheng, Xize and Chen, Yifu and Fang, Minghui and Zuo, Jialong and Yang, Qian and Li, Ruiqi and Zhang, Ziang and Yang, Xiaoda and others},
journal={arXiv preprint arXiv:2408.16532},
year={2024}
}
@article{ji2024language,
title={Language-codec: Reducing the gaps between discrete codec representation and speech language models},
author={Ji, Shengpeng and Fang, Minghui and Jiang, Ziyue and Huang, Rongjie and Zuo, Jialung and Wang, Shulei and Zhao, Zhou},
journal={arXiv preprint arXiv:2402.12208},
year={2024}
}
```