WavTokenizer / README.md
novateur's picture
Update README.md
9789e02 verified
|
raw
history blame
5.62 kB
metadata
license: mit
tags:
  - codec
  - speech-language-models
  - text-to-speech
  - gpt4-o
  - tokenizer
  - codec-representation

WavTokenizer: SOTA Discrete Codec Models With Forty Tokens Per Second for Audio Language Modeling

arXiv demo model

πŸŽ‰πŸŽ‰ with WavTokenizer, you can represent speech, music, and audio with only 40 tokens per second!

πŸŽ‰πŸŽ‰ with WavTokenizer, You can get strong reconstruction results.

πŸŽ‰πŸŽ‰ WavTokenizer owns rich semantic information and is build for audio language models such as GPT4-o.

πŸ”₯ News

  • 2024.08: We release WavTokenizer on arxiv.

result

Installation

To use WavTokenizer, install it using:

conda create -n wavtokenizer python=3.9
conda activate wavtokenizer
pip install -r requirements.txt

Infer

Part1: Reconstruct audio from raw wav


from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer


device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"
audio_outpath = "xxx"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)


wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
features,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id) 
torchaudio.save(audio_outpath, audio_out, sample_rate=24000, encoding='PCM_S', bits_per_sample=16)

Part2: Generating discrete codecs


from encoder.utils import convert_audio
import torchaudio
import torch
from decoder.pretrained import WavTokenizer

device=torch.device('cpu')

config_path = "./configs/xxx.yaml"
model_path = "./xxx.ckpt"

wavtokenizer = WavTokenizer.from_pretrained0802(config_path, model_path)
wavtokenizer = wavtokenizer.to(device)

wav, sr = torchaudio.load(audio_path)
wav = convert_audio(wav, sr, 24000, 1) 
bandwidth_id = torch.tensor([0])
wav=wav.to(device)
_,discrete_code= wavtokenizer.encode_infer(wav, bandwidth_id=bandwidth_id)
print(discrete_code)

Part3: Audio reconstruction through codecs

# audio_tokens [n_q,1,t]/[n_q,t]
features = wavtokenizer.codes_to_features(audio_tokens)
bandwidth_id = torch.tensor([0])  
audio_out = wavtokenizer.decode(features, bandwidth_id=bandwidth_id)

Available models

πŸ€— links to the Huggingface model hub.

Model name HuggingFace Corpus aa Parameters Open-Source
WavTokenizer-small-600-24k-4096 πŸ€— LibriTTS 40 Speech √
WavTokenizer-small-320-24k-4096 πŸ€— LibriTTS 75 Speech √
WavTokenizer-medium-600-24k-4096 πŸ€— 10000 Hours 40 Speech, Audio, Music Coming Soon
WavTokenizer-medium-320-24k-4096 πŸ€— 10000 Hours 75 Speech, Audio, Music Coming Soon
WavTokenizer-large-600-24k-4096 πŸ€— LibriTTS 40 Speech, Audio, Music Coming Soon
WavTokenizer-large-320-24k-4096 πŸ€— 80000 Hours 75 Speech, Audio, Music Comming Soon

Training

Step1: Prepare train dataset

# Process the data into a form similar to ./data/demo.txt

Step2: Modifying configuration files

# ./configs/xxx.yaml
# Modify the values of parameters such as batch_size, filelist_path, save_dir, device

Step3: Start training process

Refer to Pytorch Lightning documentation for details about customizing the training pipeline.

cd ./WavTokenizer
python train.py fit --config ./configs/xxx.yaml

Citation

If this code contributes to your research, please cite our work, Language-Codec and WavTokenizer:

@misc{ji2024languagecodec,
      title={Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models}, 
      author={Shengpeng Ji and Minghui Fang and Ziyue Jiang and Rongjie Huang and Jialung Zuo and Shulei Wang and Zhou Zhao},
      year={2024},
      eprint={2402.12208},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}