oliverdk's picture
End of training
51b0cb7 verified
|
raw
history blame
3.12 kB
---
license: bsd-3-clause
base_model: Salesforce/codegen-350M-mono
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codegen-350M-mono-measurement_pred-diamonds-seed0
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# codegen-350M-mono-measurement_pred-diamonds-seed0
This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3804
- Accuracy: 0.9146
- Accuracy Sensor 0: 0.9046
- Auroc Sensor 0: 0.9551
- Accuracy Sensor 1: 0.9170
- Auroc Sensor 1: 0.9423
- Accuracy Sensor 2: 0.9398
- Auroc Sensor 2: 0.9764
- Accuracy Aggregated: 0.8970
- Auroc Aggregated: 0.9614
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:|
| 0.2892 | 0.9997 | 781 | 0.3250 | 0.8582 | 0.8459 | 0.8992 | 0.8448 | 0.8967 | 0.8836 | 0.9420 | 0.8584 | 0.9095 |
| 0.1886 | 1.9994 | 1562 | 0.3029 | 0.8740 | 0.8822 | 0.9276 | 0.8798 | 0.9227 | 0.9057 | 0.9626 | 0.8284 | 0.9363 |
| 0.1237 | 2.9990 | 2343 | 0.2722 | 0.9012 | 0.8803 | 0.9463 | 0.9087 | 0.9354 | 0.9390 | 0.9761 | 0.8767 | 0.9562 |
| 0.0683 | 4.0 | 3125 | 0.3122 | 0.9088 | 0.8871 | 0.9520 | 0.9166 | 0.9417 | 0.9334 | 0.9757 | 0.8980 | 0.9590 |
| 0.0322 | 4.9984 | 3905 | 0.3804 | 0.9146 | 0.9046 | 0.9551 | 0.9170 | 0.9423 | 0.9398 | 0.9764 | 0.8970 | 0.9614 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1