metadata
license: bsd-3-clause
base_model: Salesforce/codegen-350M-mono
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codegen-350M-mono-measurement_pred-diamonds-seed2
results: []
codegen-350M-mono-measurement_pred-diamonds-seed2
This model is a fine-tuned version of Salesforce/codegen-350M-mono on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4023
- Accuracy: 0.9108
- Accuracy Sensor 0: 0.9220
- Auroc Sensor 0: 0.9580
- Accuracy Sensor 1: 0.9109
- Auroc Sensor 1: 0.9645
- Accuracy Sensor 2: 0.9260
- Auroc Sensor 2: 0.9611
- Accuracy Aggregated: 0.8845
- Auroc Aggregated: 0.9532
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3009 | 0.9997 | 781 | 0.4552 | 0.8074 | 0.8220 | 0.9041 | 0.8092 | 0.9255 | 0.8372 | 0.9304 | 0.7610 | 0.9026 |
0.1989 | 1.9994 | 1562 | 0.3633 | 0.8595 | 0.8835 | 0.9425 | 0.8544 | 0.9520 | 0.8757 | 0.9517 | 0.8244 | 0.9351 |
0.1335 | 2.9990 | 2343 | 0.3032 | 0.8924 | 0.8985 | 0.9529 | 0.8877 | 0.9608 | 0.9246 | 0.9573 | 0.8588 | 0.9463 |
0.093 | 4.0 | 3125 | 0.3016 | 0.9138 | 0.9203 | 0.9581 | 0.9131 | 0.9651 | 0.9304 | 0.9609 | 0.8914 | 0.9529 |
0.0432 | 4.9984 | 3905 | 0.4023 | 0.9108 | 0.9220 | 0.9580 | 0.9109 | 0.9645 | 0.9260 | 0.9611 | 0.8845 | 0.9532 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1