|
--- |
|
license: bsd-3-clause |
|
base_model: Salesforce/codegen-350M-mono |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: codegen-350M-mono-measurement_pred-diamonds-seed2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# codegen-350M-mono-measurement_pred-diamonds-seed2 |
|
|
|
This model is a fine-tuned version of [Salesforce/codegen-350M-mono](https://huggingface.co/Salesforce/codegen-350M-mono) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4023 |
|
- Accuracy: 0.9108 |
|
- Accuracy Sensor 0: 0.9220 |
|
- Auroc Sensor 0: 0.9580 |
|
- Accuracy Sensor 1: 0.9109 |
|
- Auroc Sensor 1: 0.9645 |
|
- Accuracy Sensor 2: 0.9260 |
|
- Auroc Sensor 2: 0.9611 |
|
- Accuracy Aggregated: 0.8845 |
|
- Auroc Aggregated: 0.9532 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 64 |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-----------------:|:--------------:|:-------------------:|:----------------:| |
|
| 0.3009 | 0.9997 | 781 | 0.4552 | 0.8074 | 0.8220 | 0.9041 | 0.8092 | 0.9255 | 0.8372 | 0.9304 | 0.7610 | 0.9026 | |
|
| 0.1989 | 1.9994 | 1562 | 0.3633 | 0.8595 | 0.8835 | 0.9425 | 0.8544 | 0.9520 | 0.8757 | 0.9517 | 0.8244 | 0.9351 | |
|
| 0.1335 | 2.9990 | 2343 | 0.3032 | 0.8924 | 0.8985 | 0.9529 | 0.8877 | 0.9608 | 0.9246 | 0.9573 | 0.8588 | 0.9463 | |
|
| 0.093 | 4.0 | 3125 | 0.3016 | 0.9138 | 0.9203 | 0.9581 | 0.9131 | 0.9651 | 0.9304 | 0.9609 | 0.8914 | 0.9529 | |
|
| 0.0432 | 4.9984 | 3905 | 0.4023 | 0.9108 | 0.9220 | 0.9580 | 0.9109 | 0.9645 | 0.9260 | 0.9611 | 0.8845 | 0.9532 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|