metadata
license: bsd-3-clause
base_model: Salesforce/codegen-350M-mono
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: codegen-350M-mono-measurement_pred-diamonds-seed6
results: []
codegen-350M-mono-measurement_pred-diamonds-seed6
This model is a fine-tuned version of Salesforce/codegen-350M-mono on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2981
- Accuracy: 0.9264
- Accuracy Sensor 0: 0.9256
- Auroc Sensor 0: 0.9730
- Accuracy Sensor 1: 0.9264
- Auroc Sensor 1: 0.9550
- Accuracy Sensor 2: 0.9466
- Auroc Sensor 2: 0.9816
- Accuracy Aggregated: 0.9069
- Auroc Aggregated: 0.9695
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Accuracy Sensor 0 | Auroc Sensor 0 | Accuracy Sensor 1 | Auroc Sensor 1 | Accuracy Sensor 2 | Auroc Sensor 2 | Accuracy Aggregated | Auroc Aggregated |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.2741 | 0.9997 | 781 | 0.2721 | 0.8923 | 0.9024 | 0.9236 | 0.8941 | 0.9249 | 0.9104 | 0.9478 | 0.8624 | 0.9125 |
0.1844 | 1.9994 | 1562 | 0.2277 | 0.9106 | 0.9179 | 0.9518 | 0.9016 | 0.9472 | 0.9261 | 0.9696 | 0.8967 | 0.9453 |
0.1191 | 2.9990 | 2343 | 0.2076 | 0.9246 | 0.9277 | 0.9671 | 0.9287 | 0.9586 | 0.9424 | 0.9783 | 0.8996 | 0.9638 |
0.0703 | 4.0 | 3125 | 0.2424 | 0.9277 | 0.9280 | 0.9723 | 0.9253 | 0.9534 | 0.9423 | 0.9815 | 0.9154 | 0.9686 |
0.0353 | 4.9984 | 3905 | 0.2981 | 0.9264 | 0.9256 | 0.9730 | 0.9264 | 0.9550 | 0.9466 | 0.9816 | 0.9069 | 0.9695 |
Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1