AI & ML interests

Aligning LLMs to be helpful, honest, harmless, and huggy (H4)

Recent Activity

sergiopaniego 
posted an update 12 days ago
abidlabs 
posted an update 12 days ago
view post
Post
7521
Why I think local, open-source models will eventually win.

The most useful AI applications are moving toward multi-turn agentic behavior: systems that take hundreds or even thousands of iterative steps to complete a task, e.g. Claude Code, computer-control agents that click, type, and test repeatedly.

In these cases, the power of the model is not how smart it is per token, but in how quickly it can interact with its environment and tools across many steps. In that regime, model quality becomes secondary to latency.

An open-source model that can call tools quickly, check that the right thing was clicked, or verify that a code change actually passes tests can easily outperform a slightly “smarter” closed model that has to make remote API calls for every move.

Eventually, the balance tips: it becomes impractical for an agent to rely on remote inference for every micro-action. Just as no one would tolerate a keyboard that required a network request per keystroke, users won’t accept agent workflows bottlenecked by latency. All devices will ship with local, open-source models that are “good enough” and the expectation will shift toward everything running locally. It’ll happen sooner than most people think.
·
sergiopaniego 
posted an update 13 days ago
sergiopaniego 
posted an update 16 days ago
nouamanetazi 
posted an update 17 days ago
view post
Post
3755
After training 𝐒𝐦𝐨𝐥𝐋𝐌𝟑 on 𝟑𝟖𝟒 𝐇𝟏𝟎𝟎𝐬 for nearly a month, I've come to realize something most people overlook: 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐢𝐬 𝐭𝐡𝐞 𝐦𝐚𝐤𝐞-𝐨𝐫-𝐛𝐫𝐞𝐚𝐤 𝐟𝐚𝐜𝐭𝐨𝐫 𝐢𝐧 𝐋𝐋𝐌 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠. 🔥

Everyone talks about model architecture and data quality. And yes, those matter immensely. But here's what nobody tells you: when your training run fails at 2 AM because of mysterious 𝐍𝐂𝐂𝐋 𝐞𝐫𝐫𝐨𝐫𝐬, or when your expensive GPU cluster is running at 𝟔𝟎% 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲, the problem isn't your model. It's most probably a 𝐦𝐢𝐬𝐮𝐬𝐞 𝐨𝐟 𝐭𝐡𝐞 𝐡𝐚𝐫𝐝𝐰𝐚𝐫𝐞. 🛠️

Questions that seemed simple but had no clear answers: Why is 𝐌𝐨𝐄 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐬𝐥𝐨𝐰𝐞𝐫 𝐭𝐡𝐚𝐧 𝐝𝐞𝐧𝐬𝐞 𝐦𝐨𝐝𝐞𝐥𝐬? Which 𝐍𝐂𝐂𝐋 𝐟𝐥𝐚𝐠𝐬 should we actually set? How often should we checkpoint without killing throughput?

That's why we built 𝐓𝐡𝐞 𝐒𝐦𝐨𝐥 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐏𝐥𝐚𝐲𝐛𝐨𝐨𝐤 📖: a complete guide covering everything from model architecture and data curation to the SmolLM3 training marathon, post-training techniques, and crucially, the 𝐢𝐧𝐟𝐫𝐚𝐬𝐭𝐫𝐮𝐜𝐭𝐮𝐫𝐞 𝐥𝐚𝐲𝐞𝐫 that most teams get wrong.

We validated real vs theoretical bandwidth across the entire stack: 𝐇𝐁𝐌𝟑 𝐡𝐢𝐭𝐭𝐢𝐧𝐠 𝟑 𝐓𝐁/𝐬, 𝐍𝐕𝐋𝐢𝐧𝐤 𝟒.𝟎 𝐫𝐞𝐚𝐜𝐡𝐢𝐧𝐠 𝟕𝟖𝟔 𝐆𝐁/𝐬, 𝐏𝐂𝐈𝐞 𝐆𝐞𝐧𝟒 𝐚𝐭 𝟏𝟒.𝟐 𝐆𝐁/𝐬. Then we ran collective operations across 𝟏𝟐𝟖 𝐆𝐏𝐔𝐬 (16 nodes, 8xH100s each) and measured how performance degrades at scale: all-reduce drops from 𝟒𝟖𝟎 𝐆𝐁/𝐬 on a single node to 𝟑𝟐𝟎-𝟑𝟓𝟎 𝐆𝐁/𝐬 across 16 nodes.

If you've ever wondered why your training runs are slower than they should be, or you're planning to scale up and want to avoid expensive mistakes, this guide might save you weeks of debugging.

𝐓𝐡𝐞 𝐒𝐦𝐨𝐥 𝐓𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝐏𝐥𝐚𝐲𝐛𝐨𝐨𝐤: https://lnkd.in/e5MKXUHS

Shared with ❤️ by the HuggingFace team
sergiopaniego 
posted an update 18 days ago
sergiopaniego 
posted an update 24 days ago
andito 
posted an update 26 days ago
view post
Post
1702
Finally, our new paper is out! "𝗙𝗶𝗻𝗲𝗩𝗶𝘀𝗶𝗼𝗻: 𝗢𝗽𝗲𝗻 𝗗𝗮𝘁𝗮 𝗜𝘀 𝗔𝗹𝗹 𝗬𝗼𝘂 𝗡𝗲𝗲𝗱"! 🥳
FineVision: Open Data Is All You Need (2510.17269)

If you've ever trained a VLM, you know this problem: nobody shares their data mixtures. It's a black box, making replicating SOTA work impossible.
We wanted to change that.

FineVision unifies 200 sources into 24 million samples. With 17.3 million images and 9.5 billion answer tokens, it's the largest open resource of its kind.

In the paper, we share how we built it:
🔍 finding and cleaning data at scale
🧹 removing excessive duplicates across sources
🤗 decontaminating against 66 public benchmarks

My favorite part is Figure 6 (in the video!). It's our visual diversity analysis. It shows that FineVision isn't just bigger; it's more balanced and conceptually richer than other open datasets.
NVIDIA's Eagle 2 paper highlighted just how critical this visual diversity is, and our results confirm it: models trained on FineVision consistently outperform those trained on any other open dataset on 11 benchmarks!

🎉 To celebrate the paper, I’m also releasing a concatenated and shuffled version of the full dataset! 👉HuggingFaceM4/FineVision_full_shuffled

It’s ready to stream, so you can start training your own models right away:

from datasets import load_dataset
d = load_dataset("HuggingFaceM4/FineVision_full_shuffled", split="train", streaming=True)
print(next(iter(d)))

A big shoutout to the first authors: Luis Wiedmann and Orr Zohar. They are rockstars!
merve 
posted an update 27 days ago
view post
Post
5496
deepseek-ai/DeepSeek-OCR is out! 🔥 my take ⤵️
> pretty insane it can parse and re-render charts in HTML
> it uses CLIP and SAM features concatenated, so better grounding
> very efficient per vision tokens/performance ratio
> covers 100 languages
·
sergiopaniego 
posted an update 30 days ago
view post
Post
1943
New drop! 💥 The VLM Object Understanding Comparison Space now runs with Qwen3-VL-4B and moondream3.

You can compare how models reason about images 🧠

Bonus: thanks to @ariG23498 , you now get auto-suggested prompts to explore faster.

Let’s gooo

sergiopaniego/vlm_object_understanding
sergiopaniego 
posted an update 30 days ago
view post
Post
894
New drop! 💥 The VLM Object Understanding Comparison Space now runs with Qwen3-VL-4B and moondream3.



You can compare how models reason about images 🧠

Bonus: thanks to @ariG23498 , you now get auto-suggested prompts to explore faster.

Let’s gooo

sergiopaniego/vlm_object_understanding
multimodalart 
posted an update about 1 month ago
view post
Post
3424
Want to iterate on a Hugging Face Space with an LLM?

Now you can easily convert any HF entire repo (Model, Dataset or Space) to a text file and feed it to a language model!

multimodalart/repo2txt
sergiopaniego 
posted an update about 1 month ago
view post
Post
2309
@Qwen released their new small and dense VLMs (Qwen3-VL).

They're incredibly capable and one of my all-time favourite VLMs.

🤗 We’ve prepared some resources to help you get started.

> Fine-tune Qwen3-VL-4B with SFT or GRPO (free Colab notebooks):
> SFT: https://colab.research.google.com/github/huggingface/trl/blob/main/examples/notebooks/sft_qwen_vl.ipynb
> GRPO: https://colab.research.google.com/github/huggingface/trl/blob/main/examples/notebooks/grpo_qwen3_vl.ipynb

> Compare object detection vs. Moondream3:
sergiopaniego/vlm_object_understanding

> Fine-tune from the CLI using TRL:
https://github.com/kashif/Qwen3-VL/blob/trl-sft/qwen-vl-finetune/README.md#trl-based-training-single-gpu
sergiopaniego 
posted an update about 1 month ago
view post
Post
1472
Super nice intro to fine-tuning with TRL, just dropped by @google (runs free on Colab)!

They use SFT + QLoRA to fine-tune the tiny Gemma 3 270M model for emoji generation

Here’s what the fine-tuned model generates for the prompt: “I'm learning to tweet” → 🐦🗣💻

Colab: https://colab.research.google.com/github/google-gemini/gemma-cookbook/blob/main/Demos/Emoji-Gemma-on-Web/resources/Fine_tune_Gemma_3_270M_for_emoji_generation.ipynb
Try it out: google/emoji-gemma
Learn more: https://developers.googleblog.com/en/own-your-ai-fine-tune-gemma-3-270m-for-on-device/