Activity Feed

AI & ML interests

None defined yet.

Recent Activity

codelionΒ 
posted an update about 21 hours ago
view post
Post
2487
Introducing Dhara-70M: A diffusion language model that achieves 3.8x higher throughput than autoregressive models!

Key findings from our research on optimal architectures for small language models:

β†’ Depth beats width: 32 layers outperforms 12 layers at the same parameter count
β†’ Best-in-class factuality: 47.5% on TruthfulQA
β†’ 10x training efficiency using WSD (Warmup-Stable-Decay) conversion
β†’ Canon layers add only 0.13% parameters but improve reasoning

We trained on 1B tokens using the optimal 50-30-20 dataset mix (PDFs + filtered web + educational content), then converted to diffusion with just 100M additional tokens.

Blog: https://huggingface.co/blog/codelion/optimal-model-architecture
Model: codelion/dhara-70m
  • 1 reply
Β·
codelionΒ 
posted an update 7 days ago
view post
Post
2318
Introducing PTS Visualizer - an interactive tool for exploring how language models reason!

Visualize pivotal tokens, thought anchors, and reasoning circuits. See which tokens and sentences significantly impact success probability, explore embedding clusters, and trace reasoning step-by-step.

Try it: codelion/pts-visualizer

Explore PTS datasets:
- Qwen3-0.6B: codelion/Qwen3-0.6B-pts
- DeepSeek-R1: codelion/DeepSeek-R1-Distill-Qwen-1.5B-pts

Or upload your own JSONL files!

GitHub: https://github.com/codelion/pts
mitkoxΒ 
posted an update 17 days ago
view post
Post
2231
Got to 1199.8 tokens/sec with Devstral Small -2 on my desktop GPU workstation. vLLM nightly.
Works out of the box with Mistral Vibe. Next is time to test the big one.
Β·
codelionΒ 
posted an update 19 days ago
view post
Post
2562
Recently, Essential AI released a new 8B base model EssentialAI/rnj-1 they highlighted the importance of data mix for pretraning -

"In the long run, we expect our methods to automatically represent, transform, and blend data to optimize measurable abilities in pre-training. Our work on modeling data taxonomies led to new approaches for jointly clustering and mixing data distributions under data repetition penalties. Many improvements in our STEM abilities can be traced back to this. "

This resonates with the recent work we did around optimal dataset mixing for pretraining where we saw have the right mix can increase the efficiency of training -
https://huggingface.co/blog/codelion/optimal-dataset-mixing
codelionΒ 
posted an update 21 days ago
mrfakenameΒ 
posted an update 22 days ago
view post
Post
3991
Excited to share that I've joined the Hugging Face Fellows program! πŸ€—

Looking forward to contributing to & working more closely with the open-source ecosystem - huge thanks to everyone who's supported me on this journey! πŸš€
codelionΒ 
posted an update 23 days ago
view post
Post
2296
Perplexity released a dataset (BrowseSafe) and benchmark to catch and prevent malicious prompt-injection instructions in real-time.

We trained a prompt injection classifier on BrowseSafe using adaptive-classifier with ModernBERT-base embeddings.

74.9% F1 on detecting prompt injection in web content.

Model -> adaptive-classifier/browsesafe
Dataset -> perplexity-ai/browsesafe-bench
Repo -> https://github.com/codelion/adaptive-classifier
  • 1 reply
Β·
codelionΒ 
posted an update 24 days ago
view post
Post
1600
I just published Ellora - 6 production-ready LoRA recipes for enhancing LLMs with specific capabilities. Each recipe costs under $100 to run and includes complete training code, data generation, and evaluation.

The 6 Recipes:
Recipe 1: Accuracy Recovery - Recover 75% of quantization losses with self-distillation
Recipe 2: Reasoning LoRA - Add structured thinking with GRPO (0% to 60% adoption, 75% quality boost)
Recipe 3: Tool Calling - Real execution on actual codebases
Recipe 4: Context Extension - Scale from 32K to 2M tokens (61x increase)
Recipe 5: Secure Code Generation - 97% vulnerability reduction using automated Semgrep analysis
Recipe 6: Execution-Aware World Models - Teaching models runtime behavior

Why Recipes?
Ellora provides methodologies, not frameworks. Use them with your existing tools (PEFT, LoRAX, vLLM, Unsloth, HuggingFace). Each recipe uses self-supervised data generation (Magpie approach) - no expensive human labeling required.

All recipes include Jupyter notebooks you can run immediately with clear success metrics.

GitHub: https://github.com/codelion/ellora
Full Article: https://huggingface.co/blog/codelion/ellora-lora-recipes

Built something with these recipes? I'd love to see what you create!
mitkoxΒ 
posted an update about 1 month ago
view post
Post
3098
I run 20 AI coding agents locally on my desktop workstation at 400+ tokens/sec with MiniMax-M2. It’s a Sonnet drop-in replacement in my Cursor, Claude Code, Droid, Kilo and Cline peak at 11k tok/sec input and 433 tok/s output, can generate 1B+ tok/m.All with 196k context window. I'm running it for 6 days now with this config.

Today max performance was stable at 490.2 tokens/sec across 48 concurrent clients and MiniMax M2.

Z8 Fury G5, Xeon 3455, 4xA6K. Aibrix 0.5.0, vLLM 0.11.2,
Β·
hiyougaΒ 
posted an update about 1 month ago
codelionΒ 
posted an update about 1 month ago
view post
Post
1985
Introducing OpenEvolve Prompt Optimizer - a Space that automatically evolves and optimizes your prompts using OpenEvolve!

This tool uses OpenEvolve to iteratively improve prompts by testing them on real datasets and evolving better versions. No more manual prompt engineering guesswork - let OpenEvolve find the optimal prompts for you.

How it works:
- Enter your initial prompt using {input} as a placeholder for dataset inputs
- Input any HuggingFace dataset name you want to use for optimization
- Specify the dataset split and field names for your use case
- Click Optimize Prompt and the system will validate everything first
- Compare your initial prompt vs the evolved best prompt side-by-side

Try it here: algorithmicsuperintelligence/prompt-optimizer

OpenEvolve GitHub: https://github.com/algorithmicsuperintelligence/openevolve
codelionΒ 
posted an update about 1 month ago
view post
Post
2469
🎯 Introducing Chayan: A Calibrated 4-Model LLM Router Achieving 69% Accuracy on RouterArena

We're excited to share Chayan, a cost-efficient LLM router that intelligently routes queries between 4 models to maximize accuracy while minimizing cost. Chayan just submitted to the RouterArena leaderboard and achieved 69.05% accuracy on the benchmark!

πŸ”— Model: adaptive-classifier/chayan
πŸ”— Dataset: RouteWorks/RouterArena

πŸ“Š Performance Highlights

Chayan achieves impressive results on the RouterArena benchmark:
β€’ 69.05% accuracy (would rank #1 on current leaderboard)
β€’ $0.333 per 1K queries
β€’ +12.07pp improvement over all-mini baseline (56.98%)
β€’ 99% of perfect 2-model oracle performance at 57% lower cost

Compared to our previous 2-model router (61.43% accuracy), Chayan delivers +7.62pp improvement through smarter 4-model routing.

🧠 How It Works

Chayan uses an Adaptive K-NN classifier with prototype memory to route between 4 models:
β€’ openai/gpt-4o-mini (fast & cheap)
β€’ google/gemini-2.5-flash-lite (balanced)
β€’ google/gemini-2.5-flash (capable)
β€’ openai/gpt-4o (most powerful)

πŸš€ Getting Started

You can use Chayan directly from HuggingFace:

from adaptive_classifier import AdaptiveClassifier

Load Chayan
router = AdaptiveClassifier.load("adaptive-classifier/chayan")

Route a query
query = "What is the capital of France?"
predictions = router.predict(query, k=4)

Get top model recommendation
best_model = predictions[0][0]
print(f"Recommended model: {best_model}")

Built with the adaptive-classifier library: https://github.com/codelion/adaptive-classifier
codelionΒ 
posted an update about 2 months ago
view post
Post
3987
Want to experiment with pre-training dataset mixtures but don't want to process terabytes of data? We've got you covered.

We're releasing a collection of several carefully curated 1B token dataset samples specifically designed for rapid prototyping and pretraining experiments: https://huggingface.co/collections/codelion/pre-training-dataset-samples

These samples were created using reservoir sampling - an algorithm that guarantees statistically unbiased random samples from massive source datasets. This means results you get at the 1B token scale are representative of how these datasets behave at 100B+ token scales, letting you iterate quickly without the computational overhead.

The collection includes:
- finePDFs-1B: High-quality textbook-style educational content
- DCLM-baseline-1B: Filtered, diverse web content
- FineWeb-Edu-1B: Curated educational web resources

We used these exact samples to run 50+ systematic experiments on dataset mixing strategies, ultimately discovering that a 50-30-20 mixture of finePDFs + DCLM-baseline + FineWeb-Edu achieves 90%+ of GPT-2's performance with just 1/10th the training data.

Whether you're researching optimal data mixtures, testing curriculum learning strategies, or just want to quickly prototype a pretraining run, these samples give you a solid foundation to start experimenting immediately.

Read the full story of how we used these datasets to find the optimal pretraining recipe: https://huggingface.co/blog/codelion/optimal-dataset-mixing
  • 1 reply
Β·
mitkoxΒ 
posted an update about 2 months ago
view post
Post
4149
I just threw Qwen3-0.6B in BF16 into an on device AI drag race on AMD Strix Halo with vLLM:

564 tokens/sec on short 100-token sprints
96 tokens/sec on 8K-token marathons

TL;DR You don't just run AI on AMD. You negotiate with it.

The hardware absolutely delivers. Spoiler alert; there is exactly ONE configuration where vLLM + ROCm + Triton + PyTorch + Drivers + Ubuntu Kernel to work at the same time. Finding it required the patience of a saint

Consumer AMD for AI inference is the ultimate "budget warrior" play, insane performance-per-euro, but you need hardcore technical skills that would make a senior sysadmin nod in quiet respect.
  • 1 reply
Β·
codelionΒ 
posted an update about 2 months ago
view post
Post
276
MARS Achieves Strong Results on Google DeepMind's IMO-Bench

We evaluated OptiLLM's MARS (Multi-Agent Reasoning System) approach on IMO-Bench, Google DeepMind's challenging mathematical reasoning benchmark with International Mathematical Olympiad-level problems.

What is MARS?

MARS is a multi-agent reasoning technique that works with any LLM. It uses 3 parallel reasoning agents that independently solve problems, then verifies their solutions through consensus and iterative refinement. The key advantage: it's model-agnostic and can be applied to any base model through OptiLLM's inference proxy.

Results on IMO-Bench:

AnswerBench (400 short-answer problems):
MARS: 36.0% (144/400 correct)
Baseline: 24.5% (98/400 correct)
Improvement: +11.5pp across all domains

Category breakdown:
- Algebra: 33% (vs 21% baseline)
- Combinatorics: 26% (vs 19% baseline)
- Geometry: 43% (vs 28% baseline)
- Number Theory: 42% (vs 30% baseline)

ProofBench (60 proof construction problems):
MARS: 26.7% (16/60 correct)
Baseline: 18.3% (11/60 correct)
Improvement: +8.4pp

Category breakdown:
- Number Theory: 42.9% (vs 14.3% baseline)
- Combinatorics: 37.5% (vs 31.2% baseline)
- Algebra: 18.8% (vs 25.0% baseline)
- Geometry: 7.1% (vs 0.0% baseline)

All results achieved using google/gemini-2.5-flash-lite-preview-09-2025 as the base model. The same MARS approach can enhance reasoning for any model through OptiLLM's OpenAI-compatible API.

Datasets available at:
AnswerBench: huggingface.co/datasets/Hwilner/imo-answerbench
ProofBench: huggingface.co/datasets/Hwilner/imo-proofbench

Try it yourself:

python optillm.py --approach mars --model google/gemini-2.5-flash-lite-preview-09-2025

Or via API with approach prefix:

model: "mars-google/gemini-2.5-flash-lite-preview-09-2025"

Full evaluation code and results available at: github.com/algorithmicsuperintelligence/optillm
DmitryRyuminΒ 
posted an update about 2 months ago
view post
Post
1251
πŸš€πŸ‘οΈπŸŒŸ New Research Alert - ICCV 2025 (Poster)! πŸŒŸπŸ‘οΈπŸš€
πŸ“„ Title: Is Less More? Exploring Token Condensation as Training-Free Test-Time Adaptation πŸ”

πŸ“ Description: Token Condensation as Adaptation (TCA) improves the performance and efficiency of Vision Language Models in zero-shot inference by introducing domain anchor tokens.

πŸ‘₯ Authors: Zixin Wang, Dong Gong, Sen Wang, Zi Huang, Yadan Luo

πŸ“… Conference: ICCV, 19 – 23 Oct, 2025 | Honolulu, Hawai'i, USA πŸ‡ΊπŸ‡Έ

πŸ“„ Paper: Is Less More? Exploring Token Condensation as Training-free Test-time Adaptation (2410.14729)

πŸ“ Repository: https://github.com/Jo-wang/TCA

πŸš€ ICCV-2023-25-Papers: https://github.com/DmitryRyumin/ICCV-2023-25-Papers

πŸš€ Added to the Session 1: https://github.com/DmitryRyumin/ICCV-2023-25-Papers/blob/main/sections/2025/main/session-1.md

πŸ“š More Papers: more cutting-edge research presented at other conferences in the DmitryRyumin/NewEraAI-Papers curated by @DmitryRyumin

πŸ” Keywords: #TestTimeAdaptation #TokenCondensation #VisionLanguageModels #TrainingFreeAdaptation #ZeroShotLearning #EfficientAI #AI #ICCV2025 #ResearchHighlight