librarian-bot's picture
Librarian Bot: Add base_model information to model
6b19e33
|
raw
history blame
2.21 kB
metadata
license: agpl-3.0
tags:
  - generated_from_trainer
datasets:
  - mim_gold_ner
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: vesteinn/XLMR-ENIS
model-index:
  - name: XLMR-ENIS-finetuned-ner
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: mim_gold_ner
          type: mim_gold_ner
          args: mim-gold-ner
        metrics:
          - type: precision
            value: 0.8714268909540054
            name: Precision
          - type: recall
            value: 0.842296759522456
            name: Recall
          - type: f1
            value: 0.8566142460684552
            name: F1
          - type: accuracy
            value: 0.9827189115812273
            name: Accuracy

XLMR-ENIS-finetuned-ner

This model is a fine-tuned version of vesteinn/XLMR-ENIS on the mim_gold_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0955
  • Precision: 0.8714
  • Recall: 0.8423
  • F1: 0.8566
  • Accuracy: 0.9827

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0561 1.0 2904 0.0939 0.8481 0.8205 0.8341 0.9804
0.031 2.0 5808 0.0917 0.8652 0.8299 0.8472 0.9819
0.0186 3.0 8712 0.0955 0.8714 0.8423 0.8566 0.9827

Framework versions

  • Transformers 4.11.1
  • Pytorch 1.9.0+cu102
  • Datasets 1.12.1
  • Tokenizers 0.10.3