|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: pakawadeep/mt5-small-finetuned-ctfl-augmented_05 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# pakawadeep/mt5-small-finetuned-ctfl-augmented_05 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.9083 |
|
- Validation Loss: 0.9637 |
|
- Train Rouge1: 8.4866 |
|
- Train Rouge2: 1.3861 |
|
- Train Rougel: 8.4512 |
|
- Train Rougelsum: 8.4866 |
|
- Train Gen Len: 11.9554 |
|
- Epoch: 23 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| |
|
| 9.2952 | 2.6353 | 1.5618 | 0.0 | 1.5117 | 1.5288 | 16.5347 | 0 | |
|
| 4.7507 | 1.8159 | 5.5776 | 0.2888 | 5.5611 | 5.5281 | 12.2475 | 1 | |
|
| 3.4617 | 1.8004 | 4.7218 | 0.2888 | 4.7218 | 4.6723 | 11.2723 | 2 | |
|
| 2.8272 | 1.7197 | 6.1410 | 0.8251 | 6.1410 | 6.0113 | 11.1634 | 3 | |
|
| 2.4003 | 1.6328 | 7.7086 | 2.1782 | 7.7086 | 7.7086 | 11.7277 | 4 | |
|
| 2.0952 | 1.5374 | 8.2037 | 2.1782 | 8.2037 | 8.2037 | 11.8713 | 5 | |
|
| 1.8634 | 1.4405 | 8.2037 | 2.1782 | 8.2037 | 8.2037 | 11.9406 | 6 | |
|
| 1.6782 | 1.3615 | 8.2037 | 2.1782 | 8.2037 | 8.2037 | 11.9307 | 7 | |
|
| 1.5333 | 1.3046 | 8.6987 | 2.1782 | 8.6987 | 8.6987 | 11.9356 | 8 | |
|
| 1.4151 | 1.2718 | 8.6987 | 2.1782 | 8.6987 | 8.6987 | 11.9455 | 9 | |
|
| 1.3320 | 1.2373 | 8.6987 | 2.1782 | 8.6987 | 8.6987 | 11.9406 | 10 | |
|
| 1.2664 | 1.2064 | 8.9816 | 2.3762 | 8.9109 | 8.9816 | 11.9158 | 11 | |
|
| 1.2220 | 1.1775 | 8.9816 | 2.3762 | 8.9109 | 8.9816 | 11.9356 | 12 | |
|
| 1.1767 | 1.1413 | 8.9816 | 2.3762 | 8.9109 | 8.9816 | 11.9554 | 13 | |
|
| 1.1303 | 1.1072 | 8.9816 | 2.3762 | 8.9109 | 8.9816 | 11.9505 | 14 | |
|
| 1.0972 | 1.0782 | 8.6987 | 1.7822 | 8.6987 | 8.6987 | 11.9703 | 15 | |
|
| 1.0664 | 1.0578 | 8.4866 | 1.3861 | 8.4512 | 8.4866 | 11.9554 | 16 | |
|
| 1.0392 | 1.0504 | 8.4866 | 1.3861 | 8.4512 | 8.4866 | 11.9752 | 17 | |
|
| 1.0152 | 1.0242 | 8.4866 | 1.3861 | 8.4512 | 8.4866 | 11.9653 | 18 | |
|
| 0.9892 | 1.0193 | 8.4866 | 1.3861 | 8.4512 | 8.4866 | 11.9703 | 19 | |
|
| 0.9627 | 0.9990 | 8.4866 | 1.3861 | 8.4512 | 8.4866 | 11.9802 | 20 | |
|
| 0.9460 | 0.9869 | 8.4866 | 1.3861 | 8.4512 | 8.4866 | 11.9752 | 21 | |
|
| 0.9262 | 0.9735 | 7.9562 | 1.3861 | 7.9562 | 7.9562 | 11.9703 | 22 | |
|
| 0.9083 | 0.9637 | 8.4866 | 1.3861 | 8.4512 | 8.4866 | 11.9554 | 23 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|