|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-small |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: pakawadeep/mt5-small-finetuned-ctfl-augmented_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# pakawadeep/mt5-small-finetuned-ctfl-augmented_2 |
|
|
|
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.7005 |
|
- Validation Loss: 0.9348 |
|
- Train Rouge1: 7.9562 |
|
- Train Rouge2: 1.3861 |
|
- Train Rougel: 7.9562 |
|
- Train Rougelsum: 7.9915 |
|
- Train Gen Len: 11.9752 |
|
- Epoch: 27 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| |
|
| 8.2342 | 2.0102 | 1.5963 | 0.0 | 1.6101 | 1.6005 | 16.5050 | 0 | |
|
| 3.7896 | 1.7810 | 4.8515 | 0.7426 | 4.8845 | 4.8680 | 11.8614 | 1 | |
|
| 2.7018 | 1.7212 | 6.8812 | 1.4851 | 6.8812 | 6.8812 | 11.9554 | 2 | |
|
| 2.1382 | 1.5885 | 7.8996 | 2.0792 | 7.9066 | 7.9066 | 11.9010 | 3 | |
|
| 1.7718 | 1.4799 | 7.7086 | 2.0792 | 7.7086 | 7.7086 | 11.8911 | 4 | |
|
| 1.5137 | 1.3902 | 7.7086 | 2.0792 | 7.7086 | 7.7086 | 11.9653 | 5 | |
|
| 1.3341 | 1.3439 | 8.6987 | 2.0792 | 8.6987 | 8.6987 | 11.9307 | 6 | |
|
| 1.2253 | 1.2605 | 8.6987 | 2.0792 | 8.6987 | 8.6987 | 11.9356 | 7 | |
|
| 1.1425 | 1.2215 | 8.9816 | 2.3762 | 8.9816 | 8.9816 | 11.9356 | 8 | |
|
| 1.0872 | 1.1772 | 8.9816 | 2.3762 | 8.9816 | 8.9816 | 11.9554 | 9 | |
|
| 1.0400 | 1.1338 | 8.6987 | 1.8812 | 8.6987 | 8.7341 | 11.9604 | 10 | |
|
| 0.9997 | 1.0986 | 8.6987 | 1.8812 | 8.6987 | 8.7341 | 11.9554 | 11 | |
|
| 0.9732 | 1.0846 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9653 | 12 | |
|
| 0.9388 | 1.0718 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9752 | 13 | |
|
| 0.9140 | 1.0483 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9505 | 14 | |
|
| 0.8902 | 1.0285 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9554 | 15 | |
|
| 0.8704 | 1.0147 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9505 | 16 | |
|
| 0.8490 | 1.0094 | 8.4512 | 1.3861 | 8.4158 | 8.4866 | 11.9505 | 17 | |
|
| 0.8338 | 0.9880 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9406 | 18 | |
|
| 0.8139 | 0.9921 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9455 | 19 | |
|
| 0.7992 | 0.9765 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9604 | 20 | |
|
| 0.7806 | 0.9704 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9604 | 21 | |
|
| 0.7651 | 0.9523 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9554 | 22 | |
|
| 0.7560 | 0.9615 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9653 | 23 | |
|
| 0.7370 | 0.9489 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9752 | 24 | |
|
| 0.7263 | 0.9350 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9604 | 25 | |
|
| 0.7111 | 0.9425 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9802 | 26 | |
|
| 0.7005 | 0.9348 | 7.9562 | 1.3861 | 7.9562 | 7.9915 | 11.9752 | 27 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|