bert-finetuned-ner / README.md
paopao0226
update model card README.md
d64e44b
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann
          type: wikiann
          config: ace
          split: validation
          args: ace
        metrics:
          - name: Precision
            type: precision
            value: 0.34523809523809523
          - name: Recall
            type: recall
            value: 0.5420560747663551
          - name: F1
            type: f1
            value: 0.4218181818181818
          - name: Accuracy
            type: accuracy
            value: 0.8688172043010752

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5677
  • Precision: 0.3452
  • Recall: 0.5421
  • F1: 0.4218
  • Accuracy: 0.8688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 13 0.5728 0.2077 0.3551 0.2621 0.8199
No log 2.0 26 0.5687 0.2889 0.3645 0.3223 0.8312
No log 3.0 39 0.5447 0.2857 0.4486 0.3491 0.8425
No log 4.0 52 0.5509 0.2881 0.4766 0.3592 0.8489
No log 5.0 65 0.5751 0.3121 0.4579 0.3712 0.8511
No log 6.0 78 0.5358 0.3851 0.5794 0.4627 0.8667
No log 7.0 91 0.5484 0.3491 0.5514 0.4275 0.8645
No log 8.0 104 0.5671 0.3580 0.5421 0.4312 0.8672
No log 9.0 117 0.5666 0.3494 0.5421 0.4249 0.8688
No log 10.0 130 0.5677 0.3452 0.5421 0.4218 0.8688

Framework versions

  • Transformers 4.29.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3