whisper-base-ta / README.md
parambharat's picture
Update metadata with huggingface_hub
c047e4e
metadata
language:
  - ta
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper Base Ta - Bharat Ramanathan
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: ta
          split: test
        metrics:
          - type: wer
            value: 15.78
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ta_in
          split: test
        metrics:
          - type: wer
            value: 20.41
            name: WER

Whisper Base Ta - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2269
  • Wer: 21.7243

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5559 0.1 1000 0.3963 35.3308
0.3891 0.2 2000 0.3146 29.1511
0.3425 0.3 3000 0.2834 25.5930
0.3108 0.1 4000 0.2669 24.7191
0.2866 0.1 5000 0.2596 25.0936
0.2697 0.2 6000 0.2507 24.5943
0.2421 0.05 6500 0.2411 23.0395
0.2425 0.1 7000 0.2370 23.3804
0.2404 0.15 7500 0.2333 22.7959
0.2381 0.2 8000 0.2311 22.9420
0.2429 0.25 8500 0.2305 22.0166
0.2402 0.3 9000 0.2284 22.1140
0.2377 0.35 9500 0.2271 22.0653
0.2389 0.4 10000 0.2269 21.7243

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2