|
--- |
|
language: |
|
- ta |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Base Ta - Bharat Ramanathan |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: ta |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 15.78 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: ta_in |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 20.41 |
|
name: WER |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Base Ta - Bharat Ramanathan |
|
|
|
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2269 |
|
- Wer: 21.7243 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1000 |
|
- training_steps: 10000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:| |
|
| 0.5559 | 0.1 | 1000 | 0.3963 | 35.3308 | |
|
| 0.3891 | 0.2 | 2000 | 0.3146 | 29.1511 | |
|
| 0.3425 | 0.3 | 3000 | 0.2834 | 25.5930 | |
|
| 0.3108 | 0.1 | 4000 | 0.2669 | 24.7191 | |
|
| 0.2866 | 0.1 | 5000 | 0.2596 | 25.0936 | |
|
| 0.2697 | 0.2 | 6000 | 0.2507 | 24.5943 | |
|
| 0.2421 | 0.05 | 6500 | 0.2411 | 23.0395 | |
|
| 0.2425 | 0.1 | 7000 | 0.2370 | 23.3804 | |
|
| 0.2404 | 0.15 | 7500 | 0.2333 | 22.7959 | |
|
| 0.2381 | 0.2 | 8000 | 0.2311 | 22.9420 | |
|
| 0.2429 | 0.25 | 8500 | 0.2305 | 22.0166 | |
|
| 0.2402 | 0.3 | 9000 | 0.2284 | 22.1140 | |
|
| 0.2377 | 0.35 | 9500 | 0.2271 | 22.0653 | |
|
| 0.2389 | 0.4 | 10000 | 0.2269 | 21.7243 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|