File size: 4,132 Bytes
04f0eb2 0f52716 04f0eb2 f8cd472 5804d70 f8cd472 4e398d9 55ec115 34a8f2e 55ec115 5549d73 0f52716 5549d73 f8cd472 7683b6a f8cd472 93864f6 f8cd472 93864f6 f8cd472 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
license: cc-by-4.0
datasets:
- wikiann
language:
- pl
pipeline_tag: token-classification
widget:
- text: "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"
- text: "Jestem Krzysiek i pracuję w Ministerstwie Sportu"
- text: "Na imię jej Wiktoria, pracuje w Krakowie na AGH"
model-index:
- name: herbert-base-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wikiann
type: wikiann
config: pl
split: test
args: pl
metrics:
- name: Precision
type: precision
value: 0.8857142857142857
- name: Recall
type: recall
value: 0.9070532179048386
- name: F1
type: f1
value: 0.896256755412619
- name: Accuracy
type: accuracy
value: 0.9581463871961428
---
# herbert-base-ner
## Model description
**herbert-base-ner** is a fine-tuned HerBERT model that can be used for **Named Entity Recognition** .
It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG).
Specifically, this model is an [*allegro/herbert-base-cased*](https://huggingface.co/allegro/herbert-base-cased) model that was fine-tuned on the Polish subset of *wikiann* dataset.
### How to use
You can use this model with Transformers *pipeline* for NER.
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_checkpoint = "pietruszkowiec/herbert-base-ner"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę "\
"z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"
ner_results = nlp(example)
print(ner_results)
```
### BibTeX entry and citation info
```
@inproceedings{mroczkowski-etal-2021-herbert,
title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
author = "Mroczkowski, Robert and
Rybak, Piotr and
Wr{\\'o}blewska, Alina and
Gawlik, Ireneusz",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
pages = "1--10",
}
```
```
@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}
```
|