File size: 4,132 Bytes
04f0eb2
0f52716
04f0eb2
 
f8cd472
 
 
 
5804d70
f8cd472
4e398d9
55ec115
 
 
 
34a8f2e
55ec115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5549d73
0f52716
 
5549d73
 
f8cd472
 
 
 
 
 
 
7683b6a
f8cd472
 
 
 
 
 
93864f6
 
 
 
 
f8cd472
93864f6
 
 
f8cd472
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: cc-by-4.0
datasets:
- wikiann
language:
- pl
pipeline_tag: token-classification
widget:
- text: "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"
- text: "Jestem Krzysiek i pracuję w Ministerstwie Sportu"
- text: "Na imię jej Wiktoria, pracuje w Krakowie na AGH"
model-index:
- name: herbert-base-ner
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: wikiann
      type: wikiann
      config: pl
      split: test
      args: pl
    metrics:
    - name: Precision
      type: precision
      value: 0.8857142857142857
    - name: Recall
      type: recall
      value: 0.9070532179048386
    - name: F1
      type: f1
      value: 0.896256755412619
    - name: Accuracy
      type: accuracy
      value: 0.9581463871961428
---


# herbert-base-ner

## Model description

**herbert-base-ner** is a fine-tuned HerBERT model that can be used for **Named Entity Recognition** .
It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG).

Specifically, this model is an [*allegro/herbert-base-cased*](https://huggingface.co/allegro/herbert-base-cased) model that was fine-tuned on the Polish subset of *wikiann* dataset.

### How to use

You can use this model with Transformers *pipeline* for NER.

```python
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

model_checkpoint = "pietruszkowiec/herbert-base-ner"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę "\
    "z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"

ner_results = nlp(example)
print(ner_results)
```

### BibTeX entry and citation info

```
@inproceedings{mroczkowski-etal-2021-herbert,
    title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
    author = "Mroczkowski, Robert  and
      Rybak, Piotr  and
      Wr{\\'o}blewska, Alina  and
      Gawlik, Ireneusz",
    booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
    month = apr,
    year = "2021",
    address = "Kiyv, Ukraine",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
    pages = "1--10",
}
```
```
@inproceedings{pan-etal-2017-cross,
    title = "Cross-lingual Name Tagging and Linking for 282 Languages",
    author = "Pan, Xiaoman  and
      Zhang, Boliang  and
      May, Jonathan  and
      Nothman, Joel  and
      Knight, Kevin  and
      Ji, Heng",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P17-1178",
    doi = "10.18653/v1/P17-1178",
    pages = "1946--1958",
    abstract = "The ambitious goal of this work is to develop a cross-lingual name tagging and linking framework for 282 languages that exist in Wikipedia. Given a document in any of these languages, our framework is able to identify name mentions, assign a coarse-grained or fine-grained type to each mention, and link it to an English Knowledge Base (KB) if it is linkable. We achieve this goal by performing a series of new KB mining methods: generating {``}silver-standard{''} annotations by transferring annotations from English to other languages through cross-lingual links and KB properties, refining annotations through self-training and topic selection, deriving language-specific morphology features from anchor links, and mining word translation pairs from cross-lingual links. Both name tagging and linking results for 282 languages are promising on Wikipedia data and on-Wikipedia data.",
}
```