pedromatias97's picture
End of training
3fd388c
|
raw
history blame
2.67 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - gtzan
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: music-genre-detector-finetuned-gtzan_dset
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: gtzan
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8972431077694235
          - name: Precision
            type: precision
            value: 0.8989153352434833
          - name: Recall
            type: recall
            value: 0.8972431077694235
          - name: F1
            type: f1
            value: 0.8974179462177999

music-genre-detector-finetuned-gtzan_dset

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3892
  • Accuracy: 0.8972
  • Precision: 0.8989
  • Recall: 0.8972
  • F1: 0.8974

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 9e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.2319 0.98 49 1.5808 0.5263 0.5682 0.5263 0.4767
1.2682 1.98 99 0.9750 0.7556 0.7524 0.7556 0.7510
0.9462 2.99 149 0.7403 0.7945 0.7964 0.7945 0.7921
0.5946 3.99 199 0.5921 0.8233 0.8281 0.8233 0.8214
0.4095 4.99 249 0.4772 0.8634 0.8663 0.8634 0.8638
0.3349 5.99 299 0.4167 0.8835 0.8866 0.8835 0.8841
0.2427 6.88 343 0.3892 0.8972 0.8989 0.8972 0.8974

Framework versions

  • Transformers 4.33.1
  • Pytorch 1.10.2+cu111
  • Datasets 2.14.5
  • Tokenizers 0.13.3