ControlNet / README.md
shreyajn's picture
Upload README.md with huggingface_hub
c083778 verified
---
library_name: pytorch
license: apache-2.0
pipeline_tag: unconditional-image-generation
tags:
- generative_ai
- quantized
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/controlnet_quantized/web-assets/model_demo.png)
# ControlNet: Optimized for Mobile Deployment
## Generating visual arts from text prompt and input guiding image
On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.
This model is an implementation of ControlNet found [here](https://github.com/lllyasviel/ControlNet).
This repository provides scripts to run ControlNet on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/controlnet_quantized).
### Model Details
- **Model Type:** Image generation
- **Model Stats:**
- Input: Text prompt and input image as a reference
- Conditioning Input: Canny-Edge
- Text Encoder Number of parameters: 340M
- UNet Number of parameters: 865M
- VAE Decoder Number of parameters: 83M
- ControlNet Number of parameters: 361M
- Model size: 1.4GB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| TextEncoder_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 11.394 ms | 0 - 74 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin) |
| TextEncoder_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 8.08 ms | 0 - 137 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/TextEncoder_Quantized.bin) |
| TextEncoder_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 10.982 ms | 0 - 1 MB | UINT16 | NPU | Use Export Script |
| UNet_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 262.52 ms | 11 - 17 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin) |
| UNet_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 192.789 ms | 3 - 1247 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/UNet_Quantized.bin) |
| UNet_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 260.158 ms | 14 - 15 MB | UINT16 | NPU | Use Export Script |
| VAEDecoder_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 390.243 ms | 0 - 36 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin) |
| VAEDecoder_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 294.404 ms | 0 - 88 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/VAEDecoder_Quantized.bin) |
| VAEDecoder_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 379.548 ms | 0 - 1 MB | UINT16 | NPU | Use Export Script |
| ControlNet_Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 100.33 ms | 2 - 68 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin) |
| ControlNet_Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 76.94 ms | 0 - 533 MB | UINT16 | NPU | [ControlNet.bin](https://huggingface.co/qualcomm/ControlNet/blob/main/ControlNet_Quantized.bin) |
| ControlNet_Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 103.52 ms | 2 - 3 MB | UINT16 | NPU | Use Export Script |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[controlnet_quantized]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo on-device
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.controlnet_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.controlnet_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.controlnet_quantized.export
```
```
Profiling Results
------------------------------------------------------------
TextEncoder_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 11.4
Estimated peak memory usage (MB): [0, 74]
Total # Ops : 570
Compute Unit(s) : NPU (570 ops)
------------------------------------------------------------
UNet_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 262.5
Estimated peak memory usage (MB): [11, 17]
Total # Ops : 5434
Compute Unit(s) : NPU (5434 ops)
------------------------------------------------------------
VAEDecoder_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 390.2
Estimated peak memory usage (MB): [0, 36]
Total # Ops : 409
Compute Unit(s) : NPU (409 ops)
------------------------------------------------------------
ControlNet_Quantized
Device : Samsung Galaxy S23 (13)
Runtime : QNN
Estimated inference time (ms) : 100.3
Estimated peak memory usage (MB): [2, 68]
Total # Ops : 2406
Compute Unit(s) : NPU (2406 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/controlnet_quantized/qai_hub_models/models/ControlNet/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Upload compiled model**
Upload compiled models from `qai_hub_models.models.controlnet_quantized` on hub.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.controlnet_quantized import Model
# Load the model
model = Model.from_precompiled()
model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
model_controlnet_quantized = hub.upload_model(model.controlnet.get_target_model_path())
```
Step 2: **Performance profiling on cloud-hosted device**
After uploading compiled models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
# Device
device = hub.Device("Samsung Galaxy S23")
profile_job_textencoder_quantized = hub.submit_profile_job(
model=model_textencoder_quantized,
device=device,
)
profile_job_unet_quantized = hub.submit_profile_job(
model=model_unet_quantized,
device=device,
)
profile_job_vaedecoder_quantized = hub.submit_profile_job(
model=model_vaedecoder_quantized,
device=device,
)
profile_job_controlnet_quantized = hub.submit_profile_job(
model=model_controlnet_quantized,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data_textencoder_quantized = model.text_encoder.sample_inputs()
inference_job_textencoder_quantized = hub.submit_inference_job(
model=model_textencoder_quantized,
device=device,
inputs=input_data_textencoder_quantized,
)
on_device_output_textencoder_quantized = inference_job_textencoder_quantized.download_output_data()
input_data_unet_quantized = model.unet.sample_inputs()
inference_job_unet_quantized = hub.submit_inference_job(
model=model_unet_quantized,
device=device,
inputs=input_data_unet_quantized,
)
on_device_output_unet_quantized = inference_job_unet_quantized.download_output_data()
input_data_vaedecoder_quantized = model.vae_decoder.sample_inputs()
inference_job_vaedecoder_quantized = hub.submit_inference_job(
model=model_vaedecoder_quantized,
device=device,
inputs=input_data_vaedecoder_quantized,
)
on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()
input_data_controlnet_quantized = model.controlnet.sample_inputs()
inference_job_controlnet_quantized = hub.submit_inference_job(
model=model_controlnet_quantized,
device=device,
inputs=input_data_controlnet_quantized,
)
on_device_output_controlnet_quantized = inference_job_controlnet_quantized.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN ( `.so` / `.bin` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.
## View on Qualcomm® AI Hub
Get more details on ControlNet's performance across various devices [here](https://aihub.qualcomm.com/models/controlnet_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of ControlNet can be found [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE)
## References
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
* [Source Model Implementation](https://github.com/lllyasviel/ControlNet)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:ai-hub-support@qti.qualcomm.com).
## Usage and Limitations
Model may not be used for or in connection with any of the following applications:
- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation