|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- nerd |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model_index: |
|
- name: ner_nerd_fine |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: nerd |
|
type: nerd |
|
args: nerd |
|
metric: |
|
name: Accuracy |
|
type: accuracy |
|
value: 0.9050232835369201 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_nerd_fine |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the nerd dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3373 |
|
- Precision: 0.6326 |
|
- Recall: 0.6734 |
|
- F1: 0.6524 |
|
- Accuracy: 0.9050 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.6219 | 1.0 | 8235 | 0.3347 | 0.6066 | 0.6581 | 0.6313 | 0.9015 | |
|
| 0.3071 | 2.0 | 16470 | 0.3165 | 0.6349 | 0.6637 | 0.6490 | 0.9060 | |
|
| 0.2384 | 3.0 | 24705 | 0.3311 | 0.6373 | 0.6769 | 0.6565 | 0.9068 | |
|
| 0.1834 | 4.0 | 32940 | 0.3414 | 0.6349 | 0.6780 | 0.6557 | 0.9069 | |
|
| 0.1392 | 5.0 | 41175 | 0.3793 | 0.6334 | 0.6775 | 0.6547 | 0.9068 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.9.1 |
|
- Pytorch 1.9.0+cu102 |
|
- Datasets 1.11.0 |
|
- Tokenizers 0.10.2 |
|
|