financial-rag-matryoshka
Model finetuned for financial use-cases from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model strives to excel tremendously in Financial Document Retrieval Tasks, concurrently preserving a maximum level of generalized performance.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-large-en-v1.5
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
sentences = [
'JP Morgan reported total deposits of $2.6 trillion in the year ending December 31, 2023.',
"What were JP Morgan's total deposits in 2023?",
'What is the primary source of revenue for the software company, Microsoft?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.88 |
cosine_accuracy@3 |
0.96 |
cosine_accuracy@5 |
0.9867 |
cosine_accuracy@10 |
0.9956 |
cosine_precision@1 |
0.88 |
cosine_precision@3 |
0.32 |
cosine_precision@5 |
0.1973 |
cosine_precision@10 |
0.0996 |
cosine_recall@1 |
0.88 |
cosine_recall@3 |
0.96 |
cosine_recall@5 |
0.9867 |
cosine_recall@10 |
0.9956 |
cosine_ndcg@10 |
0.9427 |
cosine_mrr@10 |
0.9252 |
cosine_map@100 |
0.9254 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.88 |
cosine_accuracy@3 |
0.96 |
cosine_accuracy@5 |
0.9867 |
cosine_accuracy@10 |
0.9911 |
cosine_precision@1 |
0.88 |
cosine_precision@3 |
0.32 |
cosine_precision@5 |
0.1973 |
cosine_precision@10 |
0.0991 |
cosine_recall@1 |
0.88 |
cosine_recall@3 |
0.96 |
cosine_recall@5 |
0.9867 |
cosine_recall@10 |
0.9911 |
cosine_ndcg@10 |
0.9408 |
cosine_mrr@10 |
0.924 |
cosine_map@100 |
0.9245 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8711 |
cosine_accuracy@3 |
0.96 |
cosine_accuracy@5 |
0.9867 |
cosine_accuracy@10 |
0.9911 |
cosine_precision@1 |
0.8711 |
cosine_precision@3 |
0.32 |
cosine_precision@5 |
0.1973 |
cosine_precision@10 |
0.0991 |
cosine_recall@1 |
0.8711 |
cosine_recall@3 |
0.96 |
cosine_recall@5 |
0.9867 |
cosine_recall@10 |
0.9911 |
cosine_ndcg@10 |
0.9381 |
cosine_mrr@10 |
0.9203 |
cosine_map@100 |
0.9207 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8756 |
cosine_accuracy@3 |
0.96 |
cosine_accuracy@5 |
0.9867 |
cosine_accuracy@10 |
0.9911 |
cosine_precision@1 |
0.8756 |
cosine_precision@3 |
0.32 |
cosine_precision@5 |
0.1973 |
cosine_precision@10 |
0.0991 |
cosine_recall@1 |
0.8756 |
cosine_recall@3 |
0.96 |
cosine_recall@5 |
0.9867 |
cosine_recall@10 |
0.9911 |
cosine_ndcg@10 |
0.9396 |
cosine_mrr@10 |
0.9223 |
cosine_map@100 |
0.9228 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8667 |
cosine_accuracy@3 |
0.9556 |
cosine_accuracy@5 |
0.9867 |
cosine_accuracy@10 |
0.9911 |
cosine_precision@1 |
0.8667 |
cosine_precision@3 |
0.3185 |
cosine_precision@5 |
0.1973 |
cosine_precision@10 |
0.0991 |
cosine_recall@1 |
0.8667 |
cosine_recall@3 |
0.9556 |
cosine_recall@5 |
0.9867 |
cosine_recall@10 |
0.9911 |
cosine_ndcg@10 |
0.9346 |
cosine_mrr@10 |
0.9157 |
cosine_map@100 |
0.916 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8311 |
cosine_accuracy@3 |
0.96 |
cosine_accuracy@5 |
0.9733 |
cosine_accuracy@10 |
0.9911 |
cosine_precision@1 |
0.8311 |
cosine_precision@3 |
0.32 |
cosine_precision@5 |
0.1947 |
cosine_precision@10 |
0.0991 |
cosine_recall@1 |
0.8311 |
cosine_recall@3 |
0.96 |
cosine_recall@5 |
0.9733 |
cosine_recall@10 |
0.9911 |
cosine_ndcg@10 |
0.9208 |
cosine_mrr@10 |
0.8972 |
cosine_map@100 |
0.8975 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 4,275 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 15 tokens
- mean: 44.74 tokens
- max: 114 tokens
|
- min: 9 tokens
- mean: 18.12 tokens
- max: 32 tokens
|
- Samples:
positive |
anchor |
At the end of fiscal year 2023, Exxon Mobil reported a debt-to-equity ratio of 0.32, implying that the company used more equity than debt in its capital structure. |
What was the debt-to-equity ratio for Exxon Mobil at the end of fiscal year 2023? |
Amazon Web Services (AWS) generated $12.7 billion in net sales in the fourth quarter of 2020, up 28% from the same period of the previous year. It accounted for about 10% of Amazon’s total net sales for the quarter. |
How did Amazon's AWS segment perform in the fourth quarter of 2020? |
JPMorgan Chase generates revenues by providing a wide range of banking and financial services. These include investment banking (M&As, advisory), consumer and community banking (home mortgages, auto loans), commercial banking, and asset and wealth management. |
What are the key revenue sources for JPMorgan Chase? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
1024,
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_1024_cosine_map@100 |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.9552 |
8 |
- |
0.9090 |
0.8848 |
0.8992 |
0.9052 |
0.8775 |
0.9030 |
1.1940 |
10 |
0.4749 |
- |
- |
- |
- |
- |
- |
1.9104 |
16 |
- |
0.9170 |
0.9095 |
0.9109 |
0.9201 |
0.8961 |
0.9212 |
2.3881 |
20 |
0.0862 |
- |
- |
- |
- |
- |
- |
2.9851 |
25 |
- |
0.9190 |
0.9071 |
0.9160 |
0.9278 |
0.8998 |
0.9234 |
3.5821 |
30 |
0.0315 |
- |
- |
- |
- |
- |
- |
3.9403 |
33 |
- |
0.9183 |
0.9053 |
0.9122 |
0.9287 |
0.8998 |
0.9183 |
4.7761 |
40 |
0.0184 |
- |
- |
- |
- |
- |
- |
4.8955 |
41 |
- |
0.9225 |
0.9125 |
0.9164 |
0.9260 |
0.8985 |
0.9220 |
5.9701 |
50 |
0.0135 |
0.9268 |
0.9132 |
0.9208 |
0.9257 |
0.8961 |
0.9271 |
6.9254 |
58 |
- |
0.9254 |
0.9158 |
0.9202 |
0.9212 |
0.8938 |
0.9213 |
7.1642 |
60 |
0.0123 |
- |
- |
- |
- |
- |
- |
8.0 |
67 |
- |
0.9253 |
0.916 |
0.9228 |
0.9207 |
0.8972 |
0.9243 |
8.3582 |
70 |
0.01 |
- |
- |
- |
- |
- |
- |
8.9552 |
75 |
- |
0.9254 |
0.9160 |
0.9213 |
0.9207 |
0.9005 |
0.9245 |
9.5522 |
80 |
0.0088 |
0.9254 |
0.9160 |
0.9228 |
0.9207 |
0.8975 |
0.9245 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}