rbhatia46's picture
Update README.md
aa85c6e verified
metadata
base_model: Alibaba-NLP/gte-large-en-v1.5
datasets: []
language:
  - en
library_name: sentence-transformers
license: apache-2.0
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:4275
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
widget:
  - source_sentence: >-
      The fundamental elements of Goldman Sachs’ robust risk culture include
      governance, risk identification, measurement, mitigation, culture and
      conduct, and infrastructure. They believe these elements work together to
      complement and reinforce each other to produce a comprehensive view of
      risk management.
    sentences:
      - >-
        What are the financial highlights for Bank of America Corp. in its
        latest fiscal year report?
      - What is Berkshire Hathaway's involvement in the energy sector?
      - >-
        What is Goldman Sach’s approach towards maintaining a robust risk
        culture?
  - source_sentence: >-
      HealthTech Inc.'s new drug for diabetes treatment, launched in 2021,
      contributed to approximately 30% of its total revenues for that year.
    sentences:
      - What is IBM's debt to equity ratio as of 2022?
      - >-
        In what way does HealthTech Inc's new drug contribute to its revenue
        generation?
      - What is the revenue breakdown of Alphabet for the year 2021?
  - source_sentence: >-
      The driving factor behind Tesla’s 2023 growth was the surge in demand for
      electric vehicles.
    sentences:
      - >-
        Why did McDonald's observe a decrease in overall revenue in 2023
        relative to 2022?
      - What key strategy did Walmart employ to boost its sales in 2016?
      - What was the driving factor behind Tesla's growth in 2023?
  - source_sentence: >-
      Pfizer is committed to ensuring that people around the world have access
      to its medical products. In line with this commitment, Pfizer has
      implemented programs such as donation drives, price reduction initiatives,
      and patient assistance programs to aid those in need. Furthermore, through
      partnerships with NGOs and governments, Pfizer strives to strengthen
      healthcare systems in underprivileged regions.
    sentences:
      - >-
        What is the strategy of Pfizer to improve access to medicines in
        underprivileged areas?
      - >-
        What percentage of growth in revenue did Adobe Systems report in June
        2020?
      - How is Citigroup differentiating itself among other banks?
  - source_sentence: >-
      JP Morgan reported total deposits of $2.6 trillion in the year ending
      December 31, 2023.
    sentences:
      - >-
        In the fiscal year 2023, what impact did the acquisition of T-Mobile
        bring to the revenue of AT&T?
      - >-
        What is the primary source of revenue for the software company,
        Microsoft?
      - What were JP Morgan's total deposits in 2023?
model-index:
  - name: gte-large-en-v1.5-financial-rag-matryoshka
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 1024
          type: dim_1024
        metrics:
          - type: cosine_accuracy@1
            value: 0.88
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9866666666666667
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9955555555555555
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.88
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19733333333333336
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09955555555555556
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.88
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9866666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9955555555555555
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9426916896167131
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9251851851851851
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.925362962962963
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 768
          type: dim_768
        metrics:
          - type: cosine_accuracy@1
            value: 0.88
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9866666666666667
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9911111111111112
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.88
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19733333333333336
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09911111111111114
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.88
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9866666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9911111111111112
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.940825047039427
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.924
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9245274971941638
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 512
          type: dim_512
        metrics:
          - type: cosine_accuracy@1
            value: 0.8711111111111111
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9866666666666667
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9911111111111112
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8711111111111111
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19733333333333336
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09911111111111114
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8711111111111111
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9866666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9911111111111112
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.938126332642602
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9202962962962962
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9207248677248678
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 256
          type: dim_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.8755555555555555
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9866666666666667
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9911111111111112
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8755555555555555
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19733333333333336
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09911111111111114
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8755555555555555
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9866666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9911111111111112
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9395718726230007
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9222962962962963
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9227724867724867
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 128
          type: dim_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.8666666666666667
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.9555555555555556
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9866666666666667
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9911111111111112
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8666666666666667
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3185185185185185
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19733333333333336
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09911111111111114
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8666666666666667
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.9555555555555556
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9866666666666667
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9911111111111112
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9346269584282435
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9157037037037037
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9160403095943067
            name: Cosine Map@100
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: dim 64
          type: dim_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.8311111111111111
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.96
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.9733333333333334
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9911111111111112
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.8311111111111111
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19466666666666665
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09911111111111114
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.8311111111111111
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.96
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.9733333333333334
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.9911111111111112
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9208110890988729
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8971957671957672
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8975242479721762
            name: Cosine Map@100

financial-rag-matryoshka

Model finetuned for financial use-cases from Alibaba-NLP/gte-large-en-v1.5. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

This model strives to excel tremendously in Financial Document Retrieval Tasks, concurrently preserving a maximum level of generalized performance.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-large-en-v1.5
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/gte-large-en-v1.5-financial-rag-matryoshka")
# Run inference
sentences = [
    'JP Morgan reported total deposits of $2.6 trillion in the year ending December 31, 2023.',
    "What were JP Morgan's total deposits in 2023?",
    'What is the primary source of revenue for the software company, Microsoft?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.88
cosine_accuracy@3 0.96
cosine_accuracy@5 0.9867
cosine_accuracy@10 0.9956
cosine_precision@1 0.88
cosine_precision@3 0.32
cosine_precision@5 0.1973
cosine_precision@10 0.0996
cosine_recall@1 0.88
cosine_recall@3 0.96
cosine_recall@5 0.9867
cosine_recall@10 0.9956
cosine_ndcg@10 0.9427
cosine_mrr@10 0.9252
cosine_map@100 0.9254

Information Retrieval

Metric Value
cosine_accuracy@1 0.88
cosine_accuracy@3 0.96
cosine_accuracy@5 0.9867
cosine_accuracy@10 0.9911
cosine_precision@1 0.88
cosine_precision@3 0.32
cosine_precision@5 0.1973
cosine_precision@10 0.0991
cosine_recall@1 0.88
cosine_recall@3 0.96
cosine_recall@5 0.9867
cosine_recall@10 0.9911
cosine_ndcg@10 0.9408
cosine_mrr@10 0.924
cosine_map@100 0.9245

Information Retrieval

Metric Value
cosine_accuracy@1 0.8711
cosine_accuracy@3 0.96
cosine_accuracy@5 0.9867
cosine_accuracy@10 0.9911
cosine_precision@1 0.8711
cosine_precision@3 0.32
cosine_precision@5 0.1973
cosine_precision@10 0.0991
cosine_recall@1 0.8711
cosine_recall@3 0.96
cosine_recall@5 0.9867
cosine_recall@10 0.9911
cosine_ndcg@10 0.9381
cosine_mrr@10 0.9203
cosine_map@100 0.9207

Information Retrieval

Metric Value
cosine_accuracy@1 0.8756
cosine_accuracy@3 0.96
cosine_accuracy@5 0.9867
cosine_accuracy@10 0.9911
cosine_precision@1 0.8756
cosine_precision@3 0.32
cosine_precision@5 0.1973
cosine_precision@10 0.0991
cosine_recall@1 0.8756
cosine_recall@3 0.96
cosine_recall@5 0.9867
cosine_recall@10 0.9911
cosine_ndcg@10 0.9396
cosine_mrr@10 0.9223
cosine_map@100 0.9228

Information Retrieval

Metric Value
cosine_accuracy@1 0.8667
cosine_accuracy@3 0.9556
cosine_accuracy@5 0.9867
cosine_accuracy@10 0.9911
cosine_precision@1 0.8667
cosine_precision@3 0.3185
cosine_precision@5 0.1973
cosine_precision@10 0.0991
cosine_recall@1 0.8667
cosine_recall@3 0.9556
cosine_recall@5 0.9867
cosine_recall@10 0.9911
cosine_ndcg@10 0.9346
cosine_mrr@10 0.9157
cosine_map@100 0.916

Information Retrieval

Metric Value
cosine_accuracy@1 0.8311
cosine_accuracy@3 0.96
cosine_accuracy@5 0.9733
cosine_accuracy@10 0.9911
cosine_precision@1 0.8311
cosine_precision@3 0.32
cosine_precision@5 0.1947
cosine_precision@10 0.0991
cosine_recall@1 0.8311
cosine_recall@3 0.96
cosine_recall@5 0.9733
cosine_recall@10 0.9911
cosine_ndcg@10 0.9208
cosine_mrr@10 0.8972
cosine_map@100 0.8975

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,275 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 15 tokens
    • mean: 44.74 tokens
    • max: 114 tokens
    • min: 9 tokens
    • mean: 18.12 tokens
    • max: 32 tokens
  • Samples:
    positive anchor
    At the end of fiscal year 2023, Exxon Mobil reported a debt-to-equity ratio of 0.32, implying that the company used more equity than debt in its capital structure. What was the debt-to-equity ratio for Exxon Mobil at the end of fiscal year 2023?
    Amazon Web Services (AWS) generated $12.7 billion in net sales in the fourth quarter of 2020, up 28% from the same period of the previous year. It accounted for about 10% of Amazon’s total net sales for the quarter. How did Amazon's AWS segment perform in the fourth quarter of 2020?
    JPMorgan Chase generates revenues by providing a wide range of banking and financial services. These include investment banking (M&As, advisory), consumer and community banking (home mortgages, auto loans), commercial banking, and asset and wealth management. What are the key revenue sources for JPMorgan Chase?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            1024,
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_1024_cosine_map@100 dim_128_cosine_map@100 dim_256_cosine_map@100 dim_512_cosine_map@100 dim_64_cosine_map@100 dim_768_cosine_map@100
0.9552 8 - 0.9090 0.8848 0.8992 0.9052 0.8775 0.9030
1.1940 10 0.4749 - - - - - -
1.9104 16 - 0.9170 0.9095 0.9109 0.9201 0.8961 0.9212
2.3881 20 0.0862 - - - - - -
2.9851 25 - 0.9190 0.9071 0.9160 0.9278 0.8998 0.9234
3.5821 30 0.0315 - - - - - -
3.9403 33 - 0.9183 0.9053 0.9122 0.9287 0.8998 0.9183
4.7761 40 0.0184 - - - - - -
4.8955 41 - 0.9225 0.9125 0.9164 0.9260 0.8985 0.9220
5.9701 50 0.0135 0.9268 0.9132 0.9208 0.9257 0.8961 0.9271
6.9254 58 - 0.9254 0.9158 0.9202 0.9212 0.8938 0.9213
7.1642 60 0.0123 - - - - - -
8.0 67 - 0.9253 0.916 0.9228 0.9207 0.8972 0.9243
8.3582 70 0.01 - - - - - -
8.9552 75 - 0.9254 0.9160 0.9213 0.9207 0.9005 0.9245
9.5522 80 0.0088 0.9254 0.9160 0.9228 0.9207 0.8975 0.9245
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.6
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}