riyadifirman's picture
End of training
2ec87d9 verified
|
raw
history blame
3.35 kB
metadata
library_name: transformers
base_model: RobertZ2011/resnet-18-birb
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: klasifikasiburung_new
    results: []

klasifikasiburung_new

This model is a fine-tuned version of RobertZ2011/resnet-18-birb on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1769
  • Accuracy: 0.7604
  • Precision: 0.7654
  • Recall: 0.7604
  • F1: 0.7572

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
2.3725 1.0 375 2.1701 0.5720 0.6410 0.5720 0.5531
1.9971 2.0 750 1.7855 0.6595 0.6896 0.6595 0.6456
1.6092 3.0 1125 1.5948 0.7026 0.7201 0.7026 0.6921
1.5044 4.0 1500 1.4862 0.7173 0.7288 0.7173 0.7078
1.2893 5.0 1875 1.4145 0.7309 0.7402 0.7309 0.7236
1.2276 6.0 2250 1.3653 0.7373 0.7454 0.7373 0.7310
1.1467 7.0 2625 1.3099 0.7478 0.7536 0.7478 0.7420
1.0491 8.0 3000 1.2975 0.7451 0.7518 0.7451 0.7399
0.9231 9.0 3375 1.2683 0.7518 0.7574 0.7518 0.7470
0.8979 10.0 3750 1.2389 0.7561 0.7609 0.7561 0.7519
0.9467 11.0 4125 1.2400 0.7566 0.7608 0.7566 0.7517
0.8315 12.0 4500 1.2164 0.7565 0.7623 0.7565 0.7530
0.7316 13.0 4875 1.2005 0.7570 0.7612 0.7570 0.7531
0.6786 14.0 5250 1.2080 0.7560 0.7623 0.7560 0.7527
0.7923 15.0 5625 1.1869 0.7582 0.7628 0.7582 0.7545
0.7415 16.0 6000 1.1802 0.7575 0.7633 0.7575 0.7548
0.6292 17.0 6375 1.1994 0.7542 0.7602 0.7542 0.7513
0.7069 18.0 6750 1.1769 0.7604 0.7654 0.7604 0.7572
0.69 19.0 7125 1.1743 0.7572 0.7610 0.7572 0.7542
0.6476 20.0 7500 1.1704 0.7585 0.7638 0.7585 0.7558

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1