File size: 3,486 Bytes
40fd083 8107860 40fd083 8107860 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
license: cc-by-nc-nd-4.0
library_name: peft
tags:
- generated_from_trainer
base_model: rizla/rizla-17
model-index:
- name: lorazapam-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: rizla/rizla-17
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: meta-math/MetaMathQA-40K
type:
system_prompt: "You are an expert problem solver who is great at teaching how to solve problems via first principles reasoning"
field_system: system
field_instruction: query
field_output: response
format: "[INST] {instruction} [/INST]"
no_input_format: "[INST] {instruction} [/INST]"
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./lorazapam-out
## You can optionally freeze the entire model and unfreeze a subset of parameters
# - lm_head.*
# - model.embed_tokens.*
# - model.layers.2[0-9]+.block_sparse_moe.gate.*
# - model.layers.2[0-9]+.block_sparse_moe.experts.*
# - model.layers.3[0-9]+.block_sparse_moe.gate.*
# - model.layers.3[0-9]+.block_sparse_moe.experts.*
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 512
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: false
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 1
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
# deepspeed: deepspeed_configs/zero_1.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# lorazapam-out
This model is a fine-tuned version of [rizla/rizla-17](https://huggingface.co/rizla/rizla-17) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0 |