rollerhafeezh-amikom's picture
Training complete
2c4c435
|
raw
history blame
2.26 kB
metadata
license: mit
base_model: xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - id_nergrit_corpus
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-base-ner-silvanus
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: id_nergrit_corpus
          type: id_nergrit_corpus
          config: ner
          split: validation
          args: ner
        metrics:
          - name: Precision
            type: precision
            value: 0.9014463504877228
          - name: Recall
            type: recall
            value: 0.9038785834738617
          - name: F1
            type: f1
            value: 0.9026608285618053
          - name: Accuracy
            type: accuracy
            value: 0.9895516717325228

xlm-roberta-base-ner-silvanus

This model is a fine-tuned version of xlm-roberta-base on the id_nergrit_corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0457
  • Precision: 0.9014
  • Recall: 0.9039
  • F1: 0.9027
  • Accuracy: 0.9896

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0492 1.0 1567 0.0410 0.8863 0.8938 0.8900 0.9886
0.0285 2.0 3134 0.0416 0.8941 0.9025 0.8983 0.9895
0.0159 3.0 4701 0.0457 0.9014 0.9039 0.9027 0.9896

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1