rollerhafeezh-amikom's picture
Training complete
8203958
|
raw
history blame
1.72 kB
---
license: mit
base_model: xlm-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: xlm-roberta-base-ner-silvanus
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-ner-silvanus
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1614
- Precision: 0.9454
- Recall: 0.9534
- F1: 0.9494
- Accuracy: 0.9550
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 6
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1526 | 1.0 | 6242 | 0.1463 | 0.9328 | 0.9483 | 0.9405 | 0.9526 |
| 0.0957 | 2.0 | 12484 | 0.1250 | 0.9420 | 0.9514 | 0.9467 | 0.9663 |
| 0.0889 | 3.0 | 18726 | 0.1614 | 0.9454 | 0.9534 | 0.9494 | 0.9550 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1