debert-imeocap / README.md
sakren's picture
sakren/debert-imeocap
92f0e16 verified
|
raw
history blame
2.82 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: debert-imeocap
    results: []

debert-imeocap

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3914
  • F1: 0.6372
  • Precision: 0.6448
  • Recall: 0.6365
  • Accuracy: 0.6365

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
1.5405 1.0 74 1.4488 0.3206 0.2386 0.4885 0.4885
1.3156 2.0 148 1.1964 0.5541 0.5627 0.575 0.575
1.0728 3.0 222 1.1077 0.6001 0.6189 0.5981 0.5981
0.9239 4.0 296 1.0742 0.6324 0.6361 0.6365 0.6365
0.7802 5.0 370 1.0834 0.6073 0.6333 0.6058 0.6058
0.661 6.0 444 1.1733 0.5984 0.6166 0.5962 0.5962
0.602 7.0 518 1.1786 0.5911 0.6193 0.5885 0.5885
0.5391 8.0 592 1.2171 0.6156 0.6251 0.6154 0.6154
0.4815 9.0 666 1.2566 0.6259 0.6399 0.625 0.625
0.4548 10.0 740 1.2927 0.6233 0.6417 0.6212 0.6212
0.4538 11.0 814 1.2969 0.6385 0.6461 0.6385 0.6385
0.4119 12.0 888 1.3455 0.6376 0.6464 0.6365 0.6365
0.3968 13.0 962 1.3709 0.6304 0.6413 0.6288 0.6288
0.352 14.0 1036 1.3823 0.6246 0.6360 0.6231 0.6231
0.3551 15.0 1110 1.3914 0.6372 0.6448 0.6365 0.6365

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.2
  • Datasets 2.18.0
  • Tokenizers 0.15.2