|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- precision |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: debert-imeocap |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# debert-imeocap |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8660 |
|
- F1: 0.6185 |
|
- Precision: 0.6337 |
|
- Recall: 0.6154 |
|
- Accuracy: 0.6154 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| |
|
| 0.4637 | 1.0 | 74 | 1.3864 | 0.6129 | 0.6262 | 0.6115 | 0.6115 | |
|
| 0.3815 | 2.0 | 148 | 1.3801 | 0.6193 | 0.6348 | 0.6173 | 0.6173 | |
|
| 0.3363 | 3.0 | 222 | 1.6944 | 0.6077 | 0.6297 | 0.6077 | 0.6077 | |
|
| 0.31 | 4.0 | 296 | 1.6945 | 0.5995 | 0.6285 | 0.5942 | 0.5942 | |
|
| 0.2885 | 5.0 | 370 | 1.5945 | 0.6218 | 0.6306 | 0.6192 | 0.6192 | |
|
| 0.2594 | 6.0 | 444 | 1.7662 | 0.6279 | 0.6396 | 0.625 | 0.625 | |
|
| 0.2319 | 7.0 | 518 | 1.7093 | 0.6210 | 0.6321 | 0.6173 | 0.6173 | |
|
| 0.2306 | 8.0 | 592 | 1.8068 | 0.6279 | 0.6341 | 0.6288 | 0.6288 | |
|
| 0.2167 | 9.0 | 666 | 1.7306 | 0.6376 | 0.6444 | 0.6346 | 0.6346 | |
|
| 0.2158 | 10.0 | 740 | 1.8745 | 0.6262 | 0.6318 | 0.6269 | 0.6269 | |
|
| 0.222 | 11.0 | 814 | 1.8323 | 0.6200 | 0.6348 | 0.6173 | 0.6173 | |
|
| 0.2152 | 12.0 | 888 | 1.8576 | 0.6246 | 0.6363 | 0.6212 | 0.6212 | |
|
| 0.226 | 13.0 | 962 | 1.8880 | 0.6343 | 0.6411 | 0.6308 | 0.6308 | |
|
| 0.2097 | 14.0 | 1036 | 1.8884 | 0.6152 | 0.6326 | 0.6115 | 0.6115 | |
|
| 0.2192 | 15.0 | 1110 | 1.8660 | 0.6185 | 0.6337 | 0.6154 | 0.6154 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|