pm
Update README.md
5ec3b79 verified
|
raw
history blame
2.71 kB
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilroberta-base
tags:
  - generated_from_trainer
  - sentiment_analysis
model-index:
  - name: go-emotions-fine-tuned-distilroberta
    results: []
datasets:
  - google-research-datasets/go_emotions
language:
  - en
metrics:
  - recall
  - precision
  - f1

go-emotions-fine-tuned-distilroberta

This model is a fine-tuned version of distilbert/distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0841
  • Micro Precision: 0.6789
  • Micro Recall: 0.5047
  • Micro F1: 0.5790
  • Macro Precision: 0.5559
  • Macro Recall: 0.4000
  • Macro F1: 0.4502
  • Weighted Precision: 0.6538
  • Weighted Recall: 0.5047
  • Weighted F1: 0.5577
  • Hamming Loss: 0.0308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Micro Precision Micro Recall Micro F1 Macro Precision Macro Recall Macro F1 Weighted Precision Weighted Recall Weighted F1 Hamming Loss
0.1062 1.0 5427 0.0889 0.6956 0.4498 0.5464 0.5087 0.3111 0.3537 0.6246 0.4498 0.4936 0.0314
0.0828 2.0 10854 0.0834 0.7042 0.4798 0.5707 0.5874 0.3562 0.4108 0.6872 0.4798 0.5306 0.0303
0.0704 3.0 16281 0.0841 0.6789 0.5047 0.5790 0.5559 0.4000 0.4502 0.6538 0.5047 0.5577 0.0308

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.21.0