miCSE / README.md
TJKlein's picture
Update README.md
c83ff03
|
raw
history blame
7.74 kB
---
pipeline_tag: sentence-similarity
tags:
- feature-extraction
- sentence-similarity
language: en
license: apache-2.0
---
# **m**utual **i**nformation **C**ontrastive **S**entence **E**mbedding (**miCSE**):
[![arXiv](https://img.shields.io/badge/arXiv-2109.05105-29d634.svg)](https://arxiv.org/abs/2211.04928)
Language model of the pre-print arXiv paper titled: "_**miCSE**: Mutual Information Contrastive Learning for Low-shot Sentence Embeddings_"
# Brief Model Description
The **miCSE** language model is trained for sentence similarity computation. Training the model imposes alignment between the attention pattern of different views (embeddings of augmentations) during contrastive learning. Learning sentence embeddings with **miCSE** entails enforcing the syntactic consistency across augmented views for every single sentence, making contrastive self-supervised learning more sample efficient. This is achieved by regularizing the attention distribution. Regularizing the attention space enables learning representation in self-supervised fashion even when the _training corpus is comparatively small_. This is particularly interesting for _real-world applications_, where training data is significantly smaller thank Wikipedia.
# Model Use Cases
The model intended to be used for encoding sentences or short paragraphs. Given an input text, the model produces a vector embedding capturing the semantics. Sentence representations correspond to embedding of the _**[CLS]**_ token. The embedding can be used for numerous tasks such as **retrieval**,**sentence similarity** comparison (see example 1) or **clustering** (see example 2).
# Training data
The model was trained on a random collection of **English** sentences from Wikipedia: [Training data file](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt)
# Model Usage
## Example 1) - Sentence Similarity
```python
from transformers import AutoTokenizer, AutoModel
import torch.nn as nn
tokenizer = AutoTokenizer.from_pretrained("sap-ai-research/miCSE")
model = AutoModel.from_pretrained("sap-ai-research/miCSE")
# Encoding of sentences in a list with a predefined maximum lengths of tokens (max_length)
max_length = 32
sentences = [
"This is a sentence for testing miCSE.",
"This is yet another test sentence for the mutual information Contrastive Sentence Embeddings model."
]
batch = tokenizer.batch_encode_plus(
sentences,
return_tensors='pt',
padding=True,
max_length=max_length,
truncation=True
)
# Compute the embeddings and keep only the _**[CLS]**_ embedding (the first token)
# Get raw embeddings (no gradients)
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True, return_dict=True)
embeddings = outputs.last_hidden_state[:,0]
# Define similarity metric, e.g., cosine similarity
sim = nn.CosineSimilarity(dim=-1)
# Compute similarity between the **first** and the **second** sentence
cos_sim = sim(embeddings.unsqueeze(1),
embeddings.unsqueeze(0))
print(f"Distance: {cos_sim[0,1].detach().item()}")
```
## Example 2) - Clustering
```python
from transformers import AutoTokenizer, AutoModel
import torch.nn as nn
import torch
import numpy as np
import tqdm
from datasets import load_dataset
import umap
import umap.plot as umap_plot
# Determine available hardware
if torch.backends.mps.is_available():
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("/Users/d065243/miCSE")
model = AutoModel.from_pretrained("/Users/d065243/miCSE")
model.to(device);
# Load Twitter data for sentiment clustering
dataset = load_dataset("tweet_eval", "sentiment")
# Compute embeddings of the tweets
# set batch size and maxium tweet token length
batch_size = 50
max_length = 128
iterations = int(np.floor(len(dataset['train'])/batch_size))*batch_size
embedding_stack = []
classes = []
for i in tqdm.notebook.tqdm(range(0,iterations,batch_size)):
# create batch
batch = tokenizer.batch_encode_plus(
dataset['train'][i:i+batch_size]['text'],
return_tensors='pt',
padding=True,
max_length=max_length,
truncation=True
).to(device)
classes = classes + dataset['train'][i:i+batch_size]['label']
# model inference without gradient
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True, return_dict=True)
embeddings = outputs.last_hidden_state[:,0]
embedding_stack.append( embeddings.cpu().clone() )
embeddings = torch.vstack(embedding_stack)
# Cluster embeddings in 2D with UMAP
umap_model = umap.UMAP(n_neighbors=250,
n_components=2,
min_dist=1.0e-9,
low_memory=True,
angular_rp_forest=True,
metric='cosine')
umap_model.fit(embeddings)
# Plot result
umap_plot.points(umap_model, labels = np.array(classes),theme='fire')
```
![UMAP Cluster](https://raw.githubusercontent.com/TJKlein/tjklein.github.io/master/images/miCSE_UMAP_small2.png)
## Example 3) - Using [SentenceTransformers](https://www.sbert.net/)
```python
from sentence_transformers import SentenceTransformer, util
from sentence_transformers import models
import torch.nn as nn
# Using the model with [CLS] embeddings
model_name = 'sap-ai-research/miCSE'
word_embedding_model = models.Transformer(model_name, max_seq_length=32)
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
# Using cosine similarity as metric
cos_sim = nn.CosineSimilarity(dim=-1)
# List of sentences for comparison
sentences_1 = ["This is a sentence for testing miCSE.",
"This is using mutual information Contrastive Sentence Embeddings model."]
sentences_2 = ["This is testing miCSE.",
"Similarity with miCSE"]
# Compute embedding for both lists
embeddings_1 = model.encode(sentences_1, convert_to_tensor=True)
embeddings_2 = model.encode(sentences_2, convert_to_tensor=True)
# Compute cosine similarities
cosine_sim_scores = cos_sim(embeddings_1, embeddings_2)
#Output of results
for i in range(len(sentences1)):
print(f"Similarity {cosine_scores[i][i]:.2f}: {sentences1[i]} << vs. >> {sentences2[i]}")
```
# Benchmark
Model results on SentEval Benchmark:
```shell
+-------+-------+-------+-------+-------+--------------+-----------------+--------+
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | S.Avg. |
+-------+-------+-------+-------+-------+--------------+-----------------+--------+
| 71.71 | 83.09 | 75.46 | 83.13 | 80.22 | 79.70 | 73.62 | 78.13 |
+-------+-------+-------+-------+-------+--------------+-----------------+--------+
```
## Citations
If you use this code in your research or want to refer to our work, please cite:
```
@article{Klein2022miCSEMI,
title={miCSE: Mutual Information Contrastive Learning for Low-shot Sentence Embeddings},
author={Tassilo Klein and Moin Nabi},
journal={ArXiv},
year={2022},
volume={abs/2211.04928}
}
```
#### Authors:
- [Tassilo Klein](https://tjklein.github.io/)
- [Moin Nabi](https://moinnabi.github.io/)