|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- feature-extraction |
|
- sentence-similarity |
|
language: en |
|
license: apache-2.0 |
|
--- |
|
# **m**utual **i**nformation **C**ontrastive **S**entence **E**mbedding (**miCSE**): |
|
[![arXiv](https://img.shields.io/badge/arXiv-2109.05105-29d634.svg)](https://arxiv.org/abs/2211.04928) |
|
Language model of the pre-print arXiv paper titled: "_**miCSE**: Mutual Information Contrastive Learning for Low-shot Sentence Embeddings_" |
|
|
|
|
|
# Brief Model Description |
|
The **miCSE** language model is trained for sentence similarity computation. Training the model imposes alignment between the attention pattern of different views (embeddings of augmentations) during contrastive learning. Learning sentence embeddings with **miCSE** entails enforcing the syntactic consistency across augmented views for every single sentence, making contrastive self-supervised learning more sample efficient. This is achieved by regularizing the attention distribution. Regularizing the attention space enables learning representation in self-supervised fashion even when the _training corpus is comparatively small_. This is particularly interesting for _real-world applications_, where training data is significantly smaller thank Wikipedia. |
|
|
|
# Model Use Cases |
|
The model intended to be used for encoding sentences or short paragraphs. Given an input text, the model produces a vector embedding capturing the semantics. Sentence representations correspond to embedding of the _**[CLS]**_ token. The embedding can be used for numerous tasks such as **retrieval**,**sentence similarity** comparison (see example 1) or **clustering** (see example 2). |
|
|
|
|
|
# Training data |
|
|
|
The model was trained on a random collection of **English** sentences from Wikipedia: [Training data file](https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt) |
|
|
|
# Model Usage |
|
## Example 1) - Sentence Similarity |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch.nn as nn |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("sap-ai-research/miCSE") |
|
|
|
model = AutoModel.from_pretrained("sap-ai-research/miCSE") |
|
|
|
# Encoding of sentences in a list with a predefined maximum lengths of tokens (max_length) |
|
|
|
max_length = 32 |
|
|
|
sentences = [ |
|
"This is a sentence for testing miCSE.", |
|
"This is yet another test sentence for the mutual information Contrastive Sentence Embeddings model." |
|
] |
|
|
|
batch = tokenizer.batch_encode_plus( |
|
sentences, |
|
return_tensors='pt', |
|
padding=True, |
|
max_length=max_length, |
|
truncation=True |
|
) |
|
|
|
# Compute the embeddings and keep only the _**[CLS]**_ embedding (the first token) |
|
|
|
# Get raw embeddings (no gradients) |
|
with torch.no_grad(): |
|
outputs = model(**batch, output_hidden_states=True, return_dict=True) |
|
|
|
embeddings = outputs.last_hidden_state[:,0] |
|
|
|
# Define similarity metric, e.g., cosine similarity |
|
|
|
sim = nn.CosineSimilarity(dim=-1) |
|
|
|
# Compute similarity between the **first** and the **second** sentence |
|
|
|
cos_sim = sim(embeddings.unsqueeze(1), |
|
embeddings.unsqueeze(0)) |
|
|
|
print(f"Distance: {cos_sim[0,1].detach().item()}") |
|
``` |
|
|
|
## Example 2) - Clustering |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch.nn as nn |
|
import torch |
|
import numpy as np |
|
import tqdm |
|
from datasets import load_dataset |
|
import umap |
|
import umap.plot as umap_plot |
|
|
|
# Determine available hardware |
|
if torch.backends.mps.is_available(): |
|
device = torch.device("mps") |
|
elif torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
# Load tokenizer and model |
|
tokenizer = AutoTokenizer.from_pretrained("/Users/d065243/miCSE") |
|
model = AutoModel.from_pretrained("/Users/d065243/miCSE") |
|
model.to(device); |
|
|
|
# Load Twitter data for sentiment clustering |
|
dataset = load_dataset("tweet_eval", "sentiment") |
|
|
|
|
|
# Compute embeddings of the tweets |
|
|
|
# set batch size and maxium tweet token length |
|
batch_size = 50 |
|
max_length = 128 |
|
|
|
iterations = int(np.floor(len(dataset['train'])/batch_size))*batch_size |
|
|
|
embedding_stack = [] |
|
classes = [] |
|
for i in tqdm.notebook.tqdm(range(0,iterations,batch_size)): |
|
# create batch |
|
batch = tokenizer.batch_encode_plus( |
|
dataset['train'][i:i+batch_size]['text'], |
|
return_tensors='pt', |
|
padding=True, |
|
max_length=max_length, |
|
truncation=True |
|
).to(device) |
|
classes = classes + dataset['train'][i:i+batch_size]['label'] |
|
|
|
# model inference without gradient |
|
with torch.no_grad(): |
|
outputs = model(**batch, output_hidden_states=True, return_dict=True) |
|
|
|
embeddings = outputs.last_hidden_state[:,0] |
|
|
|
|
|
embedding_stack.append( embeddings.cpu().clone() ) |
|
|
|
embeddings = torch.vstack(embedding_stack) |
|
|
|
|
|
# Cluster embeddings in 2D with UMAP |
|
umap_model = umap.UMAP(n_neighbors=250, |
|
n_components=2, |
|
min_dist=1.0e-9, |
|
low_memory=True, |
|
angular_rp_forest=True, |
|
metric='cosine') |
|
umap_model.fit(embeddings) |
|
|
|
# Plot result |
|
umap_plot.points(umap_model, labels = np.array(classes),theme='fire') |
|
``` |
|
|
|
![UMAP Cluster](https://raw.githubusercontent.com/TJKlein/tjklein.github.io/master/images/miCSE_UMAP_small2.png) |
|
|
|
|
|
## Example 3) - Using [SentenceTransformers](https://www.sbert.net/) |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer, util |
|
from sentence_transformers import models |
|
import torch.nn as nn |
|
|
|
# Using the model with [CLS] embeddings |
|
model_name = 'sap-ai-research/miCSE' |
|
word_embedding_model = models.Transformer(model_name, max_seq_length=32) |
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) |
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
# Using cosine similarity as metric |
|
cos_sim = nn.CosineSimilarity(dim=-1) |
|
|
|
# List of sentences for comparison |
|
sentences_1 = ["This is a sentence for testing miCSE.", |
|
"This is using mutual information Contrastive Sentence Embeddings model."] |
|
|
|
sentences_2 = ["This is testing miCSE.", |
|
"Similarity with miCSE"] |
|
|
|
# Compute embedding for both lists |
|
embeddings_1 = model.encode(sentences_1, convert_to_tensor=True) |
|
embeddings_2 = model.encode(sentences_2, convert_to_tensor=True) |
|
|
|
# Compute cosine similarities |
|
cosine_sim_scores = cos_sim(embeddings_1, embeddings_2) |
|
|
|
#Output of results |
|
for i in range(len(sentences1)): |
|
print(f"Similarity {cosine_scores[i][i]:.2f}: {sentences1[i]} << vs. >> {sentences2[i]}") |
|
``` |
|
|
|
|
|
# Benchmark |
|
|
|
Model results on SentEval Benchmark: |
|
```shell |
|
+-------+-------+-------+-------+-------+--------------+-----------------+--------+ |
|
| STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | S.Avg. | |
|
+-------+-------+-------+-------+-------+--------------+-----------------+--------+ |
|
| 71.71 | 83.09 | 75.46 | 83.13 | 80.22 | 79.70 | 73.62 | 78.13 | |
|
+-------+-------+-------+-------+-------+--------------+-----------------+--------+ |
|
``` |
|
|
|
## Citations |
|
If you use this code in your research or want to refer to our work, please cite: |
|
|
|
``` |
|
@article{Klein2022miCSEMI, |
|
title={miCSE: Mutual Information Contrastive Learning for Low-shot Sentence Embeddings}, |
|
author={Tassilo Klein and Moin Nabi}, |
|
journal={ArXiv}, |
|
year={2022}, |
|
volume={abs/2211.04928} |
|
} |
|
``` |
|
|
|
#### Authors: |
|
- [Tassilo Klein](https://tjklein.github.io/) |
|
- [Moin Nabi](https://moinnabi.github.io/) |