|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:557850 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: Alibaba-NLP/gte-base-en-v1.5 |
|
datasets: [] |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: Mwanamume aliyepangwa vizuri anasimama kwa mguu mmoja karibu na |
|
pwani safi ya bahari. |
|
sentences: |
|
- mtu anacheka wakati wa kufua nguo |
|
- Mwanamume fulani yuko nje karibu na ufuo wa bahari. |
|
- Mwanamume fulani ameketi kwenye sofa yake. |
|
- source_sentence: Mwanamume mwenye ngozi nyeusi akivuta sigareti karibu na chombo |
|
cha taka cha kijani. |
|
sentences: |
|
- Karibu na chombo cha taka mwanamume huyo alisimama na kuvuta sigareti |
|
- Kitanda ni chafu. |
|
- Alipokuwa kwenye dimbwi la kuogelea mvulana huyo mwenye ugonjwa wa albino alijihadhari |
|
na jua kupita kiasi |
|
- source_sentence: Mwanamume kijana mwenye nywele nyekundu anaketi ukutani akisoma |
|
gazeti huku mwanamke na msichana mchanga wakipita. |
|
sentences: |
|
- Mwanamume aliyevalia shati la bluu amegonga ukuta kando ya barabara na gari la |
|
bluu na gari nyekundu lenye maji nyuma. |
|
- Mwanamume mchanga anatazama gazeti huku wanawake wawili wakipita karibu naye. |
|
- Mwanamume huyo mchanga analala huku Mama akimwongoza binti yake kwenye bustani. |
|
- source_sentence: Wasichana wako nje. |
|
sentences: |
|
- Wasichana wawili wakisafiri kwenye sehemu ya kusisimua. |
|
- Kuna watu watatu wakiongoza gari linaloweza kugeuzwa-geuzwa wakipita watu wengine. |
|
- Wasichana watatu wamesimama pamoja katika chumba, mmoja anasikiliza, mwingine |
|
anaandika ukutani na wa tatu anaongea nao. |
|
- source_sentence: Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso |
|
chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo |
|
ya miguu ya benchi. |
|
sentences: |
|
- Mwanamume amelala uso chini kwenye benchi ya bustani. |
|
- Mwanamke anaunganisha uzi katika mipira kando ya rundo la mipira |
|
- Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7043347377864616 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6964343322647693 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6909108013214409 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6918757829517036 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6929234868177542 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6937500609344119 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.70124411699517 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6918131755587139 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7043347377864616 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6964343322647693 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7024370656682521 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6960997397306026 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.6937121372484026 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6942680507505805 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.6958879339072266 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.6965067811247516 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6739585793600888 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6635969331239819 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7024370656682521 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.6965067811247516 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6975572102129655 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6922084123611896 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7012769244476563 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7002000478097333 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7033203116396916 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7027884000644871 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6353839704898405 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6242173680909447 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7033203116396916 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7027884000644871 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.6909605436368886 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6880114885304113 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7044693468919807 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.7001174190718876 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7063530897910422 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7028721535481625 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5846530941942547 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5728728042034709 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7063530897910422 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7028721535481625 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.680996097859508 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.6803001320954455 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.7053262249895214 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.6987184531053297 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.7061173611755747 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.7003828247494553 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5177214664781289 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5019887605325859 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.7061173611755747 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.7003828247494553 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) <!-- at revision 269b9aca14a582d83e31b8c76b2e85a266fc1d77 --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sartifyllc/swahili-gte-base-en-v1.5-nli-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'Mwanamume aliyevalia koti la bluu la kuzuia upepo, amelala uso chini kwenye benchi ya bustani, akiwa na chupa ya pombe iliyofungwa kwenye mojawapo ya miguu ya benchi.', |
|
'Mwanamume amelala uso chini kwenye benchi ya bustani.', |
|
'Mwanamume fulani anacheza dansi kwenye klabu hiyo akifungua chupa.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7043 | |
|
| **spearman_cosine** | **0.6964** | |
|
| pearson_manhattan | 0.6909 | |
|
| spearman_manhattan | 0.6919 | |
|
| pearson_euclidean | 0.6929 | |
|
| spearman_euclidean | 0.6938 | |
|
| pearson_dot | 0.7012 | |
|
| spearman_dot | 0.6918 | |
|
| pearson_max | 0.7043 | |
|
| spearman_max | 0.6964 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.7024 | |
|
| **spearman_cosine** | **0.6961** | |
|
| pearson_manhattan | 0.6937 | |
|
| spearman_manhattan | 0.6943 | |
|
| pearson_euclidean | 0.6959 | |
|
| spearman_euclidean | 0.6965 | |
|
| pearson_dot | 0.674 | |
|
| spearman_dot | 0.6636 | |
|
| pearson_max | 0.7024 | |
|
| spearman_max | 0.6965 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.6976 | |
|
| **spearman_cosine** | **0.6922** | |
|
| pearson_manhattan | 0.7013 | |
|
| spearman_manhattan | 0.7002 | |
|
| pearson_euclidean | 0.7033 | |
|
| spearman_euclidean | 0.7028 | |
|
| pearson_dot | 0.6354 | |
|
| spearman_dot | 0.6242 | |
|
| pearson_max | 0.7033 | |
|
| spearman_max | 0.7028 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.691 | |
|
| **spearman_cosine** | **0.688** | |
|
| pearson_manhattan | 0.7045 | |
|
| spearman_manhattan | 0.7001 | |
|
| pearson_euclidean | 0.7064 | |
|
| spearman_euclidean | 0.7029 | |
|
| pearson_dot | 0.5847 | |
|
| spearman_dot | 0.5729 | |
|
| pearson_max | 0.7064 | |
|
| spearman_max | 0.7029 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.681 | |
|
| **spearman_cosine** | **0.6803** | |
|
| pearson_manhattan | 0.7053 | |
|
| spearman_manhattan | 0.6987 | |
|
| pearson_euclidean | 0.7061 | |
|
| spearman_euclidean | 0.7004 | |
|
| pearson_dot | 0.5177 | |
|
| spearman_dot | 0.502 | |
|
| pearson_max | 0.7061 | |
|
| spearman_max | 0.7004 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `num_train_epochs`: 1 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 8 |
|
- `per_device_eval_batch_size`: 8 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
<details><summary>Click to expand</summary> |
|
|
|
| Epoch | Step | Training Loss | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:-----:|:-------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.0029 | 100 | 13.2716 | - | - | - | - | - | |
|
| 0.0057 | 200 | 9.83 | - | - | - | - | - | |
|
| 0.0086 | 300 | 9.9047 | - | - | - | - | - | |
|
| 0.0115 | 400 | 7.5137 | - | - | - | - | - | |
|
| 0.0143 | 500 | 7.6419 | - | - | - | - | - | |
|
| 0.0172 | 600 | 6.9603 | - | - | - | - | - | |
|
| 0.0201 | 700 | 7.3009 | - | - | - | - | - | |
|
| 0.0229 | 800 | 7.1397 | - | - | - | - | - | |
|
| 0.0258 | 900 | 8.1352 | - | - | - | - | - | |
|
| 0.0287 | 1000 | 7.5945 | - | - | - | - | - | |
|
| 0.0315 | 1100 | 7.0476 | - | - | - | - | - | |
|
| 0.0344 | 1200 | 5.3356 | - | - | - | - | - | |
|
| 0.0373 | 1300 | 5.1529 | - | - | - | - | - | |
|
| 0.0402 | 1400 | 4.9726 | - | - | - | - | - | |
|
| 0.0430 | 1500 | 5.1683 | - | - | - | - | - | |
|
| 0.0459 | 1600 | 4.7945 | - | - | - | - | - | |
|
| 0.0488 | 1700 | 4.9624 | - | - | - | - | - | |
|
| 0.0516 | 1800 | 4.4254 | - | - | - | - | - | |
|
| 0.0545 | 1900 | 4.4379 | - | - | - | - | - | |
|
| 0.0574 | 2000 | 4.0327 | - | - | - | - | - | |
|
| 0.0602 | 2100 | 3.5138 | - | - | - | - | - | |
|
| 0.0631 | 2200 | 4.5055 | - | - | - | - | - | |
|
| 0.0660 | 2300 | 3.8966 | - | - | - | - | - | |
|
| 0.0688 | 2400 | 4.4884 | - | - | - | - | - | |
|
| 0.0717 | 2500 | 3.5825 | - | - | - | - | - | |
|
| 0.0746 | 2600 | 4.0155 | - | - | - | - | - | |
|
| 0.0774 | 2700 | 4.9842 | - | - | - | - | - | |
|
| 0.0803 | 2800 | 4.7732 | - | - | - | - | - | |
|
| 0.0832 | 2900 | 4.5095 | - | - | - | - | - | |
|
| 0.0860 | 3000 | 4.2526 | - | - | - | - | - | |
|
| 0.0889 | 3100 | 4.033 | - | - | - | - | - | |
|
| 0.0918 | 3200 | 4.0052 | - | - | - | - | - | |
|
| 0.0946 | 3300 | 3.197 | - | - | - | - | - | |
|
| 0.0975 | 3400 | 3.3423 | - | - | - | - | - | |
|
| 0.1004 | 3500 | 2.9528 | - | - | - | - | - | |
|
| 0.1033 | 3600 | 3.9315 | - | - | - | - | - | |
|
| 0.1061 | 3700 | 3.7733 | - | - | - | - | - | |
|
| 0.1090 | 3800 | 3.5153 | - | - | - | - | - | |
|
| 0.1119 | 3900 | 4.1326 | - | - | - | - | - | |
|
| 0.1147 | 4000 | 5.2179 | - | - | - | - | - | |
|
| 0.1176 | 4100 | 6.4314 | - | - | - | - | - | |
|
| 0.1205 | 4200 | 6.3485 | - | - | - | - | - | |
|
| 0.1233 | 4300 | 4.7771 | - | - | - | - | - | |
|
| 0.1262 | 4400 | 4.9055 | - | - | - | - | - | |
|
| 0.1291 | 4500 | 3.9025 | - | - | - | - | - | |
|
| 0.1319 | 4600 | 4.4638 | - | - | - | - | - | |
|
| 0.1348 | 4700 | 5.0049 | - | - | - | - | - | |
|
| 0.1377 | 4800 | 4.3124 | - | - | - | - | - | |
|
| 0.1405 | 4900 | 4.0027 | - | - | - | - | - | |
|
| 0.1434 | 5000 | 4.3173 | - | - | - | - | - | |
|
| 0.1463 | 5100 | 3.6629 | - | - | - | - | - | |
|
| 0.1491 | 5200 | 4.2759 | - | - | - | - | - | |
|
| 0.1520 | 5300 | 3.4621 | - | - | - | - | - | |
|
| 0.1549 | 5400 | 3.9251 | - | - | - | - | - | |
|
| 0.1577 | 5500 | 4.2294 | - | - | - | - | - | |
|
| 0.1606 | 5600 | 3.6244 | - | - | - | - | - | |
|
| 0.1635 | 5700 | 4.283 | - | - | - | - | - | |
|
| 0.1664 | 5800 | 4.4665 | - | - | - | - | - | |
|
| 0.1692 | 5900 | 4.956 | - | - | - | - | - | |
|
| 0.1721 | 6000 | 4.795 | - | - | - | - | - | |
|
| 0.1750 | 6100 | 4.998 | - | - | - | - | - | |
|
| 0.1778 | 6200 | 5.3316 | - | - | - | - | - | |
|
| 0.1807 | 6300 | 5.2247 | - | - | - | - | - | |
|
| 0.1836 | 6400 | 4.6554 | - | - | - | - | - | |
|
| 0.1864 | 6500 | 5.2474 | - | - | - | - | - | |
|
| 0.1893 | 6600 | 5.1168 | - | - | - | - | - | |
|
| 0.1922 | 6700 | 5.1372 | - | - | - | - | - | |
|
| 0.1950 | 6800 | 4.1564 | - | - | - | - | - | |
|
| 0.1979 | 6900 | 4.6997 | - | - | - | - | - | |
|
| 0.2008 | 7000 | 4.1854 | - | - | - | - | - | |
|
| 0.2036 | 7100 | 4.4574 | - | - | - | - | - | |
|
| 0.2065 | 7200 | 4.1859 | - | - | - | - | - | |
|
| 0.2094 | 7300 | 4.8306 | - | - | - | - | - | |
|
| 0.2122 | 7400 | 4.4487 | - | - | - | - | - | |
|
| 0.2151 | 7500 | 4.4606 | - | - | - | - | - | |
|
| 0.2180 | 7600 | 4.4222 | - | - | - | - | - | |
|
| 0.2208 | 7700 | 4.7836 | - | - | - | - | - | |
|
| 0.2237 | 7800 | 4.1475 | - | - | - | - | - | |
|
| 0.2266 | 7900 | 5.1679 | - | - | - | - | - | |
|
| 0.2294 | 8000 | 5.0106 | - | - | - | - | - | |
|
| 0.2323 | 8100 | 4.1899 | - | - | - | - | - | |
|
| 0.2352 | 8200 | 4.9873 | - | - | - | - | - | |
|
| 0.2381 | 8300 | 4.3656 | - | - | - | - | - | |
|
| 0.2409 | 8400 | 4.6117 | - | - | - | - | - | |
|
| 0.2438 | 8500 | 4.1785 | - | - | - | - | - | |
|
| 0.2467 | 8600 | 3.7809 | - | - | - | - | - | |
|
| 0.2495 | 8700 | 4.9116 | - | - | - | - | - | |
|
| 0.2524 | 8800 | 4.553 | - | - | - | - | - | |
|
| 0.2553 | 8900 | 4.3178 | - | - | - | - | - | |
|
| 0.2581 | 9000 | 5.6111 | - | - | - | - | - | |
|
| 0.2610 | 9100 | 5.4219 | - | - | - | - | - | |
|
| 0.2639 | 9200 | 5.5628 | - | - | - | - | - | |
|
| 0.2667 | 9300 | 4.4221 | - | - | - | - | - | |
|
| 0.2696 | 9400 | 4.7988 | - | - | - | - | - | |
|
| 0.2725 | 9500 | 4.9361 | - | - | - | - | - | |
|
| 0.2753 | 9600 | 4.7225 | - | - | - | - | - | |
|
| 0.2782 | 9700 | 4.7258 | - | - | - | - | - | |
|
| 0.2811 | 9800 | 4.7071 | - | - | - | - | - | |
|
| 0.2839 | 9900 | 4.5519 | - | - | - | - | - | |
|
| 0.2868 | 10000 | 4.5354 | - | - | - | - | - | |
|
| 0.2897 | 10100 | 4.3893 | - | - | - | - | - | |
|
| 0.2925 | 10200 | 4.7848 | - | - | - | - | - | |
|
| 0.2954 | 10300 | 4.7195 | - | - | - | - | - | |
|
| 0.2983 | 10400 | 4.0155 | - | - | - | - | - | |
|
| 0.3012 | 10500 | 5.1602 | - | - | - | - | - | |
|
| 0.3040 | 10600 | 4.6345 | - | - | - | - | - | |
|
| 0.3069 | 10700 | 5.39 | - | - | - | - | - | |
|
| 0.3098 | 10800 | 4.7974 | - | - | - | - | - | |
|
| 0.3126 | 10900 | 4.9736 | - | - | - | - | - | |
|
| 0.3155 | 11000 | 5.0949 | - | - | - | - | - | |
|
| 0.3184 | 11100 | 4.6704 | - | - | - | - | - | |
|
| 0.3212 | 11200 | 4.7001 | - | - | - | - | - | |
|
| 0.3241 | 11300 | 4.2913 | - | - | - | - | - | |
|
| 0.3270 | 11400 | 4.7536 | - | - | - | - | - | |
|
| 0.3298 | 11500 | 4.8349 | - | - | - | - | - | |
|
| 0.3327 | 11600 | 4.2567 | - | - | - | - | - | |
|
| 0.3356 | 11700 | 4.6754 | - | - | - | - | - | |
|
| 0.3384 | 11800 | 4.8534 | - | - | - | - | - | |
|
| 0.3413 | 11900 | 4.7486 | - | - | - | - | - | |
|
| 0.3442 | 12000 | 4.9194 | - | - | - | - | - | |
|
| 0.3470 | 12100 | 4.4572 | - | - | - | - | - | |
|
| 0.3499 | 12200 | 4.6173 | - | - | - | - | - | |
|
| 0.3528 | 12300 | 5.1292 | - | - | - | - | - | |
|
| 0.3556 | 12400 | 4.6138 | - | - | - | - | - | |
|
| 0.3585 | 12500 | 4.6884 | - | - | - | - | - | |
|
| 0.3614 | 12600 | 4.4245 | - | - | - | - | - | |
|
| 0.3643 | 12700 | 4.7534 | - | - | - | - | - | |
|
| 0.3671 | 12800 | 4.7027 | - | - | - | - | - | |
|
| 0.3700 | 12900 | 4.5186 | - | - | - | - | - | |
|
| 0.3729 | 13000 | 3.8917 | - | - | - | - | - | |
|
| 0.3757 | 13100 | 4.507 | - | - | - | - | - | |
|
| 0.3786 | 13200 | 5.4866 | - | - | - | - | - | |
|
| 0.3815 | 13300 | 4.0424 | - | - | - | - | - | |
|
| 0.3843 | 13400 | 4.4017 | - | - | - | - | - | |
|
| 0.3872 | 13500 | 4.0016 | - | - | - | - | - | |
|
| 0.3901 | 13600 | 4.0695 | - | - | - | - | - | |
|
| 0.3929 | 13700 | 4.4957 | - | - | - | - | - | |
|
| 0.3958 | 13800 | 4.4655 | - | - | - | - | - | |
|
| 0.3987 | 13900 | 4.5717 | - | - | - | - | - | |
|
| 0.4015 | 14000 | 4.134 | - | - | - | - | - | |
|
| 0.4044 | 14100 | 4.2704 | - | - | - | - | - | |
|
| 0.4073 | 14200 | 4.7712 | - | - | - | - | - | |
|
| 0.4101 | 14300 | 4.3946 | - | - | - | - | - | |
|
| 0.4130 | 14400 | 4.5848 | - | - | - | - | - | |
|
| 0.4159 | 14500 | 4.4655 | - | - | - | - | - | |
|
| 0.4187 | 14600 | 4.278 | - | - | - | - | - | |
|
| 0.4216 | 14700 | 4.2877 | - | - | - | - | - | |
|
| 0.4245 | 14800 | 3.9299 | - | - | - | - | - | |
|
| 0.4274 | 14900 | 4.7078 | - | - | - | - | - | |
|
| 0.4302 | 15000 | 4.8527 | - | - | - | - | - | |
|
| 0.4331 | 15100 | 4.3476 | - | - | - | - | - | |
|
| 0.4360 | 15200 | 4.2012 | - | - | - | - | - | |
|
| 0.4388 | 15300 | 4.1766 | - | - | - | - | - | |
|
| 0.4417 | 15400 | 3.9842 | - | - | - | - | - | |
|
| 0.4446 | 15500 | 4.1244 | - | - | - | - | - | |
|
| 0.4474 | 15600 | 4.7983 | - | - | - | - | - | |
|
| 0.4503 | 15700 | 4.2341 | - | - | - | - | - | |
|
| 0.4532 | 15800 | 4.9829 | - | - | - | - | - | |
|
| 0.4560 | 15900 | 4.0221 | - | - | - | - | - | |
|
| 0.4589 | 16000 | 4.1082 | - | - | - | - | - | |
|
| 0.4618 | 16100 | 3.8922 | - | - | - | - | - | |
|
| 0.4646 | 16200 | 4.5382 | - | - | - | - | - | |
|
| 0.4675 | 16300 | 4.4428 | - | - | - | - | - | |
|
| 0.4704 | 16400 | 3.9087 | - | - | - | - | - | |
|
| 0.4732 | 16500 | 3.7465 | - | - | - | - | - | |
|
| 0.4761 | 16600 | 4.149 | - | - | - | - | - | |
|
| 0.4790 | 16700 | 4.5691 | - | - | - | - | - | |
|
| 0.4818 | 16800 | 3.8776 | - | - | - | - | - | |
|
| 0.4847 | 16900 | 3.7354 | - | - | - | - | - | |
|
| 0.4876 | 17000 | 4.25 | - | - | - | - | - | |
|
| 0.4904 | 17100 | 4.4119 | - | - | - | - | - | |
|
| 0.4933 | 17200 | 4.2319 | - | - | - | - | - | |
|
| 0.4962 | 17300 | 4.3736 | - | - | - | - | - | |
|
| 0.4991 | 17400 | 4.5345 | - | - | - | - | - | |
|
| 0.5019 | 17500 | 4.1824 | - | - | - | - | - | |
|
| 0.5048 | 17600 | 4.0033 | - | - | - | - | - | |
|
| 0.5077 | 17700 | 4.277 | - | - | - | - | - | |
|
| 0.5105 | 17800 | 4.3553 | - | - | - | - | - | |
|
| 0.5134 | 17900 | 3.9528 | - | - | - | - | - | |
|
| 0.5163 | 18000 | 4.068 | - | - | - | - | - | |
|
| 0.5191 | 18100 | 4.0464 | - | - | - | - | - | |
|
| 0.5220 | 18200 | 4.1665 | - | - | - | - | - | |
|
| 0.5249 | 18300 | 3.7445 | - | - | - | - | - | |
|
| 0.5277 | 18400 | 4.2248 | - | - | - | - | - | |
|
| 0.5306 | 18500 | 3.9295 | - | - | - | - | - | |
|
| 0.5335 | 18600 | 3.546 | - | - | - | - | - | |
|
| 0.5363 | 18700 | 3.7463 | - | - | - | - | - | |
|
| 0.5392 | 18800 | 3.9798 | - | - | - | - | - | |
|
| 0.5421 | 18900 | 4.4773 | - | - | - | - | - | |
|
| 0.5449 | 19000 | 4.3534 | - | - | - | - | - | |
|
| 0.5478 | 19100 | 4.2347 | - | - | - | - | - | |
|
| 0.5507 | 19200 | 3.8113 | - | - | - | - | - | |
|
| 0.5535 | 19300 | 4.4689 | - | - | - | - | - | |
|
| 0.5564 | 19400 | 4.2188 | - | - | - | - | - | |
|
| 0.5593 | 19500 | 4.1266 | - | - | - | - | - | |
|
| 0.5622 | 19600 | 3.9222 | - | - | - | - | - | |
|
| 0.5650 | 19700 | 4.38 | - | - | - | - | - | |
|
| 0.5679 | 19800 | 4.4557 | - | - | - | - | - | |
|
| 0.5708 | 19900 | 4.7566 | - | - | - | - | - | |
|
| 0.5736 | 20000 | 3.8922 | - | - | - | - | - | |
|
| 0.5765 | 20100 | 4.0263 | - | - | - | - | - | |
|
| 0.5794 | 20200 | 3.9258 | - | - | - | - | - | |
|
| 0.5822 | 20300 | 4.3767 | - | - | - | - | - | |
|
| 0.5851 | 20400 | 4.1211 | - | - | - | - | - | |
|
| 0.5880 | 20500 | 4.3083 | - | - | - | - | - | |
|
| 0.5908 | 20600 | 4.4544 | - | - | - | - | - | |
|
| 0.5937 | 20700 | 4.0118 | - | - | - | - | - | |
|
| 0.5966 | 20800 | 3.9136 | - | - | - | - | - | |
|
| 0.5994 | 20900 | 3.8614 | - | - | - | - | - | |
|
| 0.6023 | 21000 | 3.8057 | - | - | - | - | - | |
|
| 0.6052 | 21100 | 4.4934 | - | - | - | - | - | |
|
| 0.6080 | 21200 | 3.9206 | - | - | - | - | - | |
|
| 0.6109 | 21300 | 4.43 | - | - | - | - | - | |
|
| 0.6138 | 21400 | 4.0576 | - | - | - | - | - | |
|
| 0.6166 | 21500 | 3.9019 | - | - | - | - | - | |
|
| 0.6195 | 21600 | 4.4216 | - | - | - | - | - | |
|
| 0.6224 | 21700 | 4.0959 | - | - | - | - | - | |
|
| 0.6253 | 21800 | 3.8756 | - | - | - | - | - | |
|
| 0.6281 | 21900 | 4.7791 | - | - | - | - | - | |
|
| 0.6310 | 22000 | 3.6284 | - | - | - | - | - | |
|
| 0.6339 | 22100 | 4.5534 | - | - | - | - | - | |
|
| 0.6367 | 22200 | 4.18 | - | - | - | - | - | |
|
| 0.6396 | 22300 | 4.3002 | - | - | - | - | - | |
|
| 0.6425 | 22400 | 3.7162 | - | - | - | - | - | |
|
| 0.6453 | 22500 | 4.8495 | - | - | - | - | - | |
|
| 0.6482 | 22600 | 4.2966 | - | - | - | - | - | |
|
| 0.6511 | 22700 | 3.7718 | - | - | - | - | - | |
|
| 0.6539 | 22800 | 4.2257 | - | - | - | - | - | |
|
| 0.6568 | 22900 | 3.9821 | - | - | - | - | - | |
|
| 0.6597 | 23000 | 4.0853 | - | - | - | - | - | |
|
| 0.6625 | 23100 | 3.6124 | - | - | - | - | - | |
|
| 0.6654 | 23200 | 3.732 | - | - | - | - | - | |
|
| 0.6683 | 23300 | 4.3821 | - | - | - | - | - | |
|
| 0.6711 | 23400 | 4.229 | - | - | - | - | - | |
|
| 0.6740 | 23500 | 4.2589 | - | - | - | - | - | |
|
| 0.6769 | 23600 | 4.4975 | - | - | - | - | - | |
|
| 0.6797 | 23700 | 3.8062 | - | - | - | - | - | |
|
| 0.6826 | 23800 | 3.6924 | - | - | - | - | - | |
|
| 0.6855 | 23900 | 3.7736 | - | - | - | - | - | |
|
| 0.6883 | 24000 | 3.7815 | - | - | - | - | - | |
|
| 0.6912 | 24100 | 4.1192 | - | - | - | - | - | |
|
| 0.6941 | 24200 | 4.2336 | - | - | - | - | - | |
|
| 0.6970 | 24300 | 4.1145 | - | - | - | - | - | |
|
| 0.6998 | 24400 | 4.0681 | - | - | - | - | - | |
|
| 0.7027 | 24500 | 4.0492 | - | - | - | - | - | |
|
| 0.7056 | 24600 | 3.7831 | - | - | - | - | - | |
|
| 0.7084 | 24700 | 4.2445 | - | - | - | - | - | |
|
| 0.7113 | 24800 | 3.9308 | - | - | - | - | - | |
|
| 0.7142 | 24900 | 3.8705 | - | - | - | - | - | |
|
| 0.7170 | 25000 | 3.6998 | - | - | - | - | - | |
|
| 0.7199 | 25100 | 3.4736 | - | - | - | - | - | |
|
| 0.7228 | 25200 | 3.9971 | - | - | - | - | - | |
|
| 0.7256 | 25300 | 3.8292 | - | - | - | - | - | |
|
| 0.7285 | 25400 | 3.8499 | - | - | - | - | - | |
|
| 0.7314 | 25500 | 3.8732 | - | - | - | - | - | |
|
| 0.7342 | 25600 | 3.9409 | - | - | - | - | - | |
|
| 0.7371 | 25700 | 4.4416 | - | - | - | - | - | |
|
| 0.7400 | 25800 | 3.663 | - | - | - | - | - | |
|
| 0.7428 | 25900 | 3.9786 | - | - | - | - | - | |
|
| 0.7457 | 26000 | 4.1781 | - | - | - | - | - | |
|
| 0.7486 | 26100 | 3.692 | - | - | - | - | - | |
|
| 0.7514 | 26200 | 3.2601 | - | - | - | - | - | |
|
| 0.7543 | 26300 | 7.1759 | - | - | - | - | - | |
|
| 0.7572 | 26400 | 7.0459 | - | - | - | - | - | |
|
| 0.7601 | 26500 | 6.1797 | - | - | - | - | - | |
|
| 0.7629 | 26600 | 6.2055 | - | - | - | - | - | |
|
| 0.7658 | 26700 | 6.1403 | - | - | - | - | - | |
|
| 0.7687 | 26800 | 5.703 | - | - | - | - | - | |
|
| 0.7715 | 26900 | 6.1283 | - | - | - | - | - | |
|
| 0.7744 | 27000 | 5.71 | - | - | - | - | - | |
|
| 0.7773 | 27100 | 5.3105 | - | - | - | - | - | |
|
| 0.7801 | 27200 | 5.4202 | - | - | - | - | - | |
|
| 0.7830 | 27300 | 5.2964 | - | - | - | - | - | |
|
| 0.7859 | 27400 | 5.4852 | - | - | - | - | - | |
|
| 0.7887 | 27500 | 5.241 | - | - | - | - | - | |
|
| 0.7916 | 27600 | 5.4322 | - | - | - | - | - | |
|
| 0.7945 | 27700 | 5.6285 | - | - | - | - | - | |
|
| 0.7973 | 27800 | 5.0215 | - | - | - | - | - | |
|
| 0.8002 | 27900 | 5.2433 | - | - | - | - | - | |
|
| 0.8031 | 28000 | 4.9617 | - | - | - | - | - | |
|
| 0.8059 | 28100 | 4.9479 | - | - | - | - | - | |
|
| 0.8088 | 28200 | 4.9077 | - | - | - | - | - | |
|
| 0.8117 | 28300 | 4.853 | - | - | - | - | - | |
|
| 0.8145 | 28400 | 4.6727 | - | - | - | - | - | |
|
| 0.8174 | 28500 | 4.9987 | - | - | - | - | - | |
|
| 0.8203 | 28600 | 4.8405 | - | - | - | - | - | |
|
| 0.8232 | 28700 | 4.9627 | - | - | - | - | - | |
|
| 0.8260 | 28800 | 4.5608 | - | - | - | - | - | |
|
| 0.8289 | 28900 | 5.0802 | - | - | - | - | - | |
|
| 0.8318 | 29000 | 4.9069 | - | - | - | - | - | |
|
| 0.8346 | 29100 | 4.8605 | - | - | - | - | - | |
|
| 0.8375 | 29200 | 4.6424 | - | - | - | - | - | |
|
| 0.8404 | 29300 | 4.7813 | - | - | - | - | - | |
|
| 0.8432 | 29400 | 4.5925 | - | - | - | - | - | |
|
| 0.8461 | 29500 | 4.7081 | - | - | - | - | - | |
|
| 0.8490 | 29600 | 4.4319 | - | - | - | - | - | |
|
| 0.8518 | 29700 | 4.7291 | - | - | - | - | - | |
|
| 0.8547 | 29800 | 4.749 | - | - | - | - | - | |
|
| 0.8576 | 29900 | 4.6148 | - | - | - | - | - | |
|
| 0.8604 | 30000 | 4.2549 | - | - | - | - | - | |
|
| 0.8633 | 30100 | 4.3415 | - | - | - | - | - | |
|
| 0.8662 | 30200 | 4.1999 | - | - | - | - | - | |
|
| 0.8690 | 30300 | 4.4298 | - | - | - | - | - | |
|
| 0.8719 | 30400 | 4.3612 | - | - | - | - | - | |
|
| 0.8748 | 30500 | 4.4834 | - | - | - | - | - | |
|
| 0.8776 | 30600 | 4.4774 | - | - | - | - | - | |
|
| 0.8805 | 30700 | 4.2524 | - | - | - | - | - | |
|
| 0.8834 | 30800 | 4.5562 | - | - | - | - | - | |
|
| 0.8863 | 30900 | 4.5261 | - | - | - | - | - | |
|
| 0.8891 | 31000 | 4.0262 | - | - | - | - | - | |
|
| 0.8920 | 31100 | 4.1109 | - | - | - | - | - | |
|
| 0.8949 | 31200 | 4.1955 | - | - | - | - | - | |
|
| 0.8977 | 31300 | 4.3169 | - | - | - | - | - | |
|
| 0.9006 | 31400 | 4.5862 | - | - | - | - | - | |
|
| 0.9035 | 31500 | 4.5503 | - | - | - | - | - | |
|
| 0.9063 | 31600 | 4.2587 | - | - | - | - | - | |
|
| 0.9092 | 31700 | 4.0028 | - | - | - | - | - | |
|
| 0.9121 | 31800 | 4.3575 | - | - | - | - | - | |
|
| 0.9149 | 31900 | 4.1033 | - | - | - | - | - | |
|
| 0.9178 | 32000 | 4.2877 | - | - | - | - | - | |
|
| 0.9207 | 32100 | 3.9537 | - | - | - | - | - | |
|
| 0.9235 | 32200 | 4.107 | - | - | - | - | - | |
|
| 0.9264 | 32300 | 4.3288 | - | - | - | - | - | |
|
| 0.9293 | 32400 | 4.102 | - | - | - | - | - | |
|
| 0.9321 | 32500 | 4.1751 | - | - | - | - | - | |
|
| 0.9350 | 32600 | 3.7919 | - | - | - | - | - | |
|
| 0.9379 | 32700 | 4.0939 | - | - | - | - | - | |
|
| 0.9407 | 32800 | 4.1822 | - | - | - | - | - | |
|
| 0.9436 | 32900 | 3.959 | - | - | - | - | - | |
|
| 0.9465 | 33000 | 3.9173 | - | - | - | - | - | |
|
| 0.9493 | 33100 | 4.3087 | - | - | - | - | - | |
|
| 0.9522 | 33200 | 4.1239 | - | - | - | - | - | |
|
| 0.9551 | 33300 | 4.1012 | - | - | - | - | - | |
|
| 0.9580 | 33400 | 3.9988 | - | - | - | - | - | |
|
| 0.9608 | 33500 | 4.1478 | - | - | - | - | - | |
|
| 0.9637 | 33600 | 4.1669 | - | - | - | - | - | |
|
| 0.9666 | 33700 | 4.0398 | - | - | - | - | - | |
|
| 0.9694 | 33800 | 3.9814 | - | - | - | - | - | |
|
| 0.9723 | 33900 | 4.3764 | - | - | - | - | - | |
|
| 0.9752 | 34000 | 4.2847 | - | - | - | - | - | |
|
| 0.9780 | 34100 | 3.9461 | - | - | - | - | - | |
|
| 0.9809 | 34200 | 4.3377 | - | - | - | - | - | |
|
| 0.9838 | 34300 | 3.8114 | - | - | - | - | - | |
|
| 0.9866 | 34400 | 4.0827 | - | - | - | - | - | |
|
| 0.9895 | 34500 | 4.0014 | - | - | - | - | - | |
|
| 0.9924 | 34600 | 4.3964 | - | - | - | - | - | |
|
| 0.9952 | 34700 | 3.9103 | - | - | - | - | - | |
|
| 0.9981 | 34800 | 4.0363 | - | - | - | - | - | |
|
| 1.0 | 34866 | - | 0.6880 | 0.6922 | 0.6961 | 0.6803 | 0.6964 | |
|
|
|
</details> |
|
|
|
### Framework Versions |
|
- Python: 3.11.9 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.40.1 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.29.3 |
|
- Datasets: 2.19.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |