akiFQCint's picture
update readme
a80319c
|
raw
history blame
6.37 kB
---
language:
- ja
- en
license_name: sarahina-non-commercial-license
license_link: LICENSE
tags:
- transformers
- sentence-similarity
- feature-extraction
- sentence-transformers
pipeline_tag: sentence-similarity
inference: false
datasets:
- hpprc/emb
- cl-nagoya/auto-wiki-qa
- cl-nagoya/ruri-dataset-ft
- hpprc/mqa-ja
- izumi-lab/llm-japanese-dataset
- sentence-transformers/NQ-retrieval
- sbintuitions/JSQuAD
- SkelterLabsInc/JaQuAD
---
# Sarashina-Embedding-v1-1B
**[日本語のREADME/Japanese README](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/README_JA.md)**
"Sarashina-Embedding-v1-1B" is a Japanese text embedding model, based on the 1.2B-parameter Japansese LLM "[Sarashina2.1-1B](https://huggingface.co/sbintuitions/sarashina2.1-1b)".
We trained this model with multi-stage contrastive learning. We achieved the state-of-the-art average score in the average of 16 datasets in [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)(Japanese Massive Text Embedding Benchmark).
This model maps sentences & paragraphs to a 1792-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Sarashina2.1-1B](https://huggingface.co/sbintuitions/sarashina2.1-1b)
- **Maximum Sequence Length:** 8,192 tokens
- **Output Dimensionality:** 1,792 dimensions
- **Similarity Function:** Cosine Similarity
- **Language:** Japanese
- **License:** [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: LlamaModel
(1): Pooling({'word_embedding_dimension': 1792, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': False})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sbintuitions/sarashina-embedding-v1-1b")
# Run inference
sentences = [
'更級日記は、平安時代中期に菅原孝標女によって書かれた回想録です。',
'Sarashinaは、SB Intuitionsが開発した日本語大規模言語モデルです。これまでに7B, 13B, 70B, 8x70Bのモデルが公開されています。',
'更科蕎麦とはなんですか?'
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1792]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
**Note**
- You do not need to add prefixes such as "Query: " and "Document: " at the beginning of the input sentence.
- This model is licensed under the [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE), which has restrictions on commercial use. If you are interested in utilizing this model for your business, please feel free to contact us through our [contact page](https://www.sbintuitions.co.jp/#contact).
## Training
"Sarashina-Embedding-v1-1B" is created through the following two-stage learning process:
### Stage 1: Weakly-supervised Learning
To achieve generic text embedding performance across a wide range of domains, we performed contrastive training on weakly-supervised data consisting of our own web-crawled data and open data.
#### Dataset
|dataset|counts|
|:-:|:-:|
|AutoWikiQA|50,521,135|
|web-crawled data|47,370,649|
|MQA|12,941,472|
|llm-japanese-dataset|9,074,340|
|wikipedia|5,555,212|
|Quiz dataset|988,478|
|Natural Questions|132,796|
|JSQuAD|62,859|
|snow|62,758|
|JaQuAD|31,746|
|mkqa|3,318|
|||
|**total**|**126,744,763**|
### Step2: Supervised Fine-tuning
To enable the model to learn a more accurate query-document similarity, we performed supervised fine-tuning using the following dataset.
# Evaluation Results with [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB)
Model |Max Tokens|Avg. | Retrieval | STS | Classification | Reranking | Clustering | PairClassification |
|:----------------------------------------------|:----------|:----------|:------------|:----------|:-----------------|:------------|:-------------|:---------------------|
| OpenAI/text-embedding-3-large | 8191 |74.05 | 74.48 | 82.52 | 77.58 | 93.58 | 53.32 | 62.35 |
| [cl-nagoya/ruri-large](https://huggingface.co/intfloat/multilingual-e5-large) | 512 |73.31 | 73.02 | **83.13** | 77.43 | 92.99 | 51.82 | 62.29 |
| [pkshatech/GLuCoSE-base-ja-v2](https://huggingface.co/pkshatech/GLuCoSE-base-ja-v2) | 512 |72.23 | 73.36 | 82.96 | 74.21 | 93.01 | 48.65 | **62.37** |
| [pkshatech/RoSEtta-base-ja](https://huggingface.co/pkshatech/RoSEtta-base-ja) |1024 |72.04 | 73.21 | 81.39 | 72.41 | 92.69 | 53.23 | 61.74 |
| [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 512|70.90 | 70.98 | 79.70 | 72.89 | 92.96 | 51.24 | 62.15 |
|||
|[**sarashina-embedding-v1-1b**](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b)(This model)|**8192**|**75.50**|**77.61**|82.71|**78.37**|**93.74**|**53.86**|62.00|
## License
This model is licensed under [Sarashina Model NonCommercial License Agreement](https://huggingface.co/sbintuitions/sarashina-embedding-v1-1b/blob/main/LICENSE).
**If you are interested in using this model for commercial purposes, please feel free to contact us through our [contact page](https://www.sbintuitions.co.jp/#contact).**