metadata
license: mit
language:
- zh
metrics:
- accuracy
- f1 (macro)
- f1 (micro)
base_model:
- google-bert/bert-base-chinese
pipeline_tag: text-classification
tags:
- Multi-label Text Classification
datasets:
- scfengv/TVL-general-layer-dataset
library_name: adapter-transformers
model-index:
- name: scfengv/TVL_GeneralLayerClassifier
results:
- task:
type: multi-label text-classification
dataset:
name: scfengv/TVL-general-layer-dataset
type: scfengv/TVL-general-layer-dataset
metrics:
- name: Accuracy
type: Accuracy
value: 0.952902
- name: F1 score (Micro)
type: F1 score (Micro)
value: 0.968717
- name: F1 score (Macro)
type: F1 score (Macro)
value: 0.970818
Model Details of TVL_GeneralLayerClassifier
Base Model
This model is fine-tuned from google-bert/bert-base-chinese.
Model Architecture
- Type: BERT-based text classification model
- Hidden Size: 768
- Number of Layers: 12
- Number of Attention Heads: 12
- Intermediate Size: 3072
- Max Sequence Length: 512
- Vocabulary Size: 21,128
Key Components
Embeddings
- Word Embeddings
- Position Embeddings
- Token Type Embeddings
- Layer Normalization
Encoder
- 12 layers of:
- Self-Attention Mechanism
- Intermediate Dense Layer
- Output Dense Layer
- Layer Normalization
- 12 layers of:
Pooler
- Dense layer for sentence representation
Classifier
- Output layer with 4 classes
Training Hyperparameters
The model was trained using the following hyperparameters:
Learning rate: 1e-05
Batch size: 32
Number of epochs: 10
Optimizer: Adam
Loss function: torch.nn.BCEWithLogitsLoss()
Training Infrastructure
- Hardware Type: NVIDIA Quadro RTX8000
- Library: PyTorch
- Hours used: 2hr 56mins
Model Parameters
- Total parameters: ~102M (estimated)
- All parameters are in 32-bit floating point (F32) format
Input Processing
- Uses BERT tokenization
- Supports sequences up to 512 tokens
Output
- 4-class multi-label classification
Performance Metrics
- Accuracy score: 0.952902
- F1 score (Micro): 0.968717
- F1 score (Macro): 0.970818
Training Dataset
This model was trained on the scfengv/TVL-general-layer-dataset.
Testing Dataset
- scfengv/TVL-general-layer-dataset
- validation
- Remove Emoji
- Emoji2Desc
- Remove Punctuation
Usage
import torch
from transformers import BertForSequenceClassification, BertTokenizer
model = BertForSequenceClassification.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
tokenizer = BertTokenizer.from_pretrained("scfengv/TVL_GeneralLayerClassifier")
# Prepare your text
text = "Your text here" ## Please refer to Dataset
inputs = tokenizer(text, return_tensors = "pt", padding = True, truncation = True, max_length = 512)
# Make prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.sigmoid(outputs.logits)
# Print predictions
print(predictions)
Additional Notes
This model is specifically designed for TVL general layer classification tasks.
It's based on the Chinese BERT model, indicating it's optimized for Chinese text.
Hardware Type: NVIDIA Quadro RTX8000
Library: PyTorch
Hours used: 2hr 56mins
Training Data
Training Hyperparameters
The model was trained using the following hyperparameters:
Learning rate: 1e-05
Batch size: 32
Number of epochs: 10
Optimizer: Adam
Loss function: torch.nn.BCEWithLogitsLoss()
Evaluation
Testing Data
- scfengv/TVL-general-layer-dataset
- validation
- Remove Emoji
- Emoji2Desc
- Remove Punctuation
Results (validation)
- Accuracy: 0.952902
- F1 Score (Micro): 0.968717
- F1 Score (Macro): 0.970818