metadata
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_file: model.pkl
widget:
structuredData:
area_mean:
- 407.4
- 1335
- 428
area_se:
- 26.99
- 77.02
- 17.12
area_worst:
- 508.9
- 1946
- 546.3
compactness_mean:
- 0.05991
- 0.1076
- 0.069
compactness_se:
- 0.01065
- 0.01895
- 0.01727
compactness_worst:
- 0.1049
- 0.3055
- 0.188
concave points_mean:
- 0.02069
- 0.08941
- 0.01393
concave points_se:
- 0.009175
- 0.01232
- 0.006747
concave points_worst:
- 0.06544
- 0.2112
- 0.06913
concavity_mean:
- 0.02638
- 0.1527
- 0.02669
concavity_se:
- 0.01245
- 0.02681
- 0.02045
concavity_worst:
- 0.08105
- 0.4159
- 0.1471
fractal_dimension_mean:
- 0.05934
- 0.05478
- 0.06057
fractal_dimension_se:
- 0.001461
- 0.001711
- 0.002922
fractal_dimension_worst:
- 0.06487
- 0.07055
- 0.07993
perimeter_mean:
- 73.28
- 134.8
- 75.51
perimeter_se:
- 2.684
- 4.119
- 1.444
perimeter_worst:
- 83.12
- 166.8
- 85.22
radius_mean:
- 11.5
- 20.64
- 11.84
radius_se:
- 0.3927
- 0.6137
- 0.2222
radius_worst:
- 12.97
- 25.37
- 13.3
smoothness_mean:
- 0.09345
- 0.09446
- 0.08871
smoothness_se:
- 0.00638
- 0.006211
- 0.005517
smoothness_worst:
- 0.1183
- 0.1562
- 0.128
symmetry_mean:
- 0.1834
- 0.1571
- 0.1533
symmetry_se:
- 0.02292
- 0.01276
- 0.01616
symmetry_worst:
- 0.274
- 0.2689
- 0.2535
texture_mean:
- 18.45
- 17.35
- 18.94
texture_se:
- 0.8429
- 0.6575
- 0.8652
texture_worst:
- 22.46
- 23.17
- 24.99
Model description
This is a Logistic Regression trained on breast cancer dataset.
Intended uses & limitations
This model is trained for educational purposes.
Training Procedure
Hyperparameters
The model is trained with below hyperparameters.
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('scaler', StandardScaler()), ('model', LogisticRegression())] |
verbose | False |
scaler | StandardScaler() |
model | LogisticRegression() |
scaler__copy | True |
scaler__with_mean | True |
scaler__with_std | True |
model__C | 1.0 |
model__class_weight | |
model__dual | False |
model__fit_intercept | True |
model__intercept_scaling | 1 |
model__l1_ratio | |
model__max_iter | 100 |
model__multi_class | auto |
model__n_jobs | |
model__penalty | l2 |
model__random_state | |
model__solver | lbfgs |
model__tol | 0.0001 |
model__verbose | 0 |
model__warm_start | False |
Model Plot
The model plot is below.
Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])Please rerun this cell to show the HTML repr or trust the notebook.
Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])
StandardScaler()
LogisticRegression()
Evaluation Results
You can find the details about evaluation process and the evaluation results.
Metric | Value |
---|---|
accuracy | 0.965035 |
f1 score | 0.965035 |
How to Get Started with the Model
Use the code below to get started with the model.
import joblib
import json
import pandas as pd
clf = joblib.load(model.pkl)
with open("config.json") as f:
config = json.load(f)
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))