|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: taskA-DeBERTa-large-1.0.0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# taskA-DeBERTa-large-1.0.0 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1001 |
|
- Accuracy: 0.7924 |
|
- Precision: 0.5855 |
|
- Recall: 0.5821 |
|
- F1: 0.5838 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.5231 | 0.39 | 500 | 0.5201 | 0.7967 | 0.7519 | 0.2795 | 0.4076 | |
|
| 0.4515 | 0.78 | 1000 | 0.5449 | 0.8032 | 0.7937 | 0.2882 | 0.4228 | |
|
| 0.4128 | 1.16 | 1500 | 0.6890 | 0.8190 | 0.6805 | 0.5216 | 0.5905 | |
|
| 0.4025 | 1.55 | 2000 | 0.9337 | 0.7787 | 0.5481 | 0.6571 | 0.5976 | |
|
| 0.4251 | 1.94 | 2500 | 0.8829 | 0.7981 | 0.6070 | 0.5476 | 0.5758 | |
|
| 0.2864 | 2.33 | 3000 | 1.1001 | 0.7924 | 0.5855 | 0.5821 | 0.5838 | |
|
| 0.3186 | 2.71 | 3500 | 1.1268 | 0.7794 | 0.5504 | 0.6455 | 0.5942 | |
|
| 0.2679 | 3.1 | 4000 | 1.0378 | 0.8039 | 0.6093 | 0.6023 | 0.6058 | |
|
| 0.1893 | 3.49 | 4500 | 1.1135 | 0.7996 | 0.6062 | 0.5677 | 0.5863 | |
|
| 0.2037 | 3.88 | 5000 | 1.1569 | 0.7945 | 0.5886 | 0.5937 | 0.5911 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|