seiching's picture
update model card README.md
1a2d433
---
language:
- zh
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper large zh - seiching
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 13
type: mozilla-foundation/common_voice_13_0
config: zh-TW
split: test
args: zh-TW
metrics:
- name: Wer
type: wer
value: 39.92812936713915
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper large zh - seiching
This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 13 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2457
- Wer Ortho: 40.3316
- Wer: 39.9281
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.0361 | 0.69 | 500 | 0.1989 | 38.3627 | 37.9517 |
| 0.0105 | 1.38 | 1000 | 0.2217 | 39.0259 | 38.9100 |
| 0.0208 | 2.06 | 1500 | 0.2299 | 39.6891 | 39.3292 |
| 0.0091 | 2.75 | 2000 | 0.2264 | 39.8964 | 39.4091 |
| 0.0153 | 3.44 | 2500 | 0.2363 | 39.8135 | 39.3891 |
| 0.0191 | 4.13 | 3000 | 0.2415 | 40.1865 | 40.0080 |
| 0.0061 | 4.81 | 3500 | 0.2542 | 41.1813 | 39.9281 |
| 0.0107 | 5.5 | 4000 | 0.2457 | 40.3316 | 39.9281 |
### Framework versions
- Transformers 4.30.2
- Pytorch 1.13.1+cu117
- Datasets 2.13.2
- Tokenizers 0.13.3