Edit model card

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
non_math
  • 'Güneş sisteminde kaç gezegen vardır?'
  • 'What is the largest ocean on Earth?'
  • 'What is the intake of energy and nutrients by living organisms called?'
math
  • "Bir düzensiz çokgenin kenar uzunlukları 5 cm, 8 cm, 7 cm ve 6 cm'dir. Çokgenin çevresi kaç cm'dir?"
  • '27 ÷ 3 = ?'
  • 'Bir altıgenin bir iç açısının ölçüsü 120° ise, tüm iç açıların toplamı kaç derecedir?'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("serdarcaglar/primary-school-math-question-multi-lang")
# Run inference
preds = model("Bir üçgenin tabanı 12 cm, yüksekliği 8 cm'dir. Üçgenin alanı kaç cm²'dir?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 10.3435 33
Label Training Sample Count
math 459
non_math 129

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0007 1 0.1982 -
0.0340 50 0.1009 -
0.0680 100 0.0054 -
0.1020 150 0.002 -
0.1361 200 0.001 -
0.1701 250 0.0023 -
0.2041 300 0.0002 -
0.2381 350 0.0013 -
0.2721 400 0.0004 -
0.3061 450 0.0004 -
0.3401 500 0.0002 -
0.3741 550 0.0001 -
0.4082 600 0.0001 -
0.4422 650 0.0002 -
0.4762 700 0.0001 -
0.5102 750 0.0001 -
0.5442 800 0.0002 -
0.5782 850 0.0002 -
0.6122 900 0.0001 -
0.6463 950 0.0005 -
0.6803 1000 0.0001 -
0.7143 1050 0.0001 -
0.7483 1100 0.0001 -
0.7823 1150 0.0001 -
0.8163 1200 0.0001 -
0.8503 1250 0.0001 -
0.8844 1300 0.0 -
0.9184 1350 0.0002 -
0.9524 1400 0.0001 -
0.9864 1450 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
6
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for serdarcaglar/primary-school-math-question-multi-lang

Evaluation results