serdarcaglar's picture
Add SetFit model
b1af78a verified
metadata
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      Bir öğrenci her gün 5 sayfa kitap okuyor. 5 gün süresince kaç sayfa kitap
      okur?
  - text: >-
      Bir inşaat firmasında 74 işçi vardı, Firma 29 işçi daha işe aldı. Firmada
      şimdi kaç işçi var?
  - text: >-
      If you have 4 coins that total 35 cents, and 3 of them are dimes, what is
      the other coin?
  - text: Bir üçgenin tabanı 12 cm, yüksekliği 8 cm'dir. Üçgenin alanı kaç cm²'dir?
  - text: >-
      Bir üçgenin kenar uzunlukları 8 cm, 10 cm ve 12 cm'dir. Üçgenin çevresi
      kaç cm'dir?
inference: true
model-index:
  - name: SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 1
            name: Accuracy

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
non_math
  • 'Güneş sisteminde kaç gezegen vardır?'
  • 'What is the largest ocean on Earth?'
  • 'What is the intake of energy and nutrients by living organisms called?'
math
  • "Bir düzensiz çokgenin kenar uzunlukları 5 cm, 8 cm, 7 cm ve 6 cm'dir. Çokgenin çevresi kaç cm'dir?"
  • '27 ÷ 3 = ?'
  • 'Bir altıgenin bir iç açısının ölçüsü 120° ise, tüm iç açıların toplamı kaç derecedir?'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("serdarcaglar/primary-school-math-question-multi-lang")
# Run inference
preds = model("Bir üçgenin tabanı 12 cm, yüksekliği 8 cm'dir. Üçgenin alanı kaç cm²'dir?")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 10.3435 33
Label Training Sample Count
math 459
non_math 129

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0007 1 0.1982 -
0.0340 50 0.1009 -
0.0680 100 0.0054 -
0.1020 150 0.002 -
0.1361 200 0.001 -
0.1701 250 0.0023 -
0.2041 300 0.0002 -
0.2381 350 0.0013 -
0.2721 400 0.0004 -
0.3061 450 0.0004 -
0.3401 500 0.0002 -
0.3741 550 0.0001 -
0.4082 600 0.0001 -
0.4422 650 0.0002 -
0.4762 700 0.0001 -
0.5102 750 0.0001 -
0.5442 800 0.0002 -
0.5782 850 0.0002 -
0.6122 900 0.0001 -
0.6463 950 0.0005 -
0.6803 1000 0.0001 -
0.7143 1050 0.0001 -
0.7483 1100 0.0001 -
0.7823 1150 0.0001 -
0.8163 1200 0.0001 -
0.8503 1250 0.0001 -
0.8844 1300 0.0 -
0.9184 1350 0.0002 -
0.9524 1400 0.0001 -
0.9864 1450 0.0001 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}