Llamazing-3.1-8B-Instruct
Overview
Llamazing-3.1-8B-Instruct balances reasoning, creativity, and conversational capabilities to deliver exceptional performance across various applications.
Usage
The following Python code demonstrates how to use Llamazing-3.1-8B-Instruct with the Divine Intellect preset:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
class LlamazingAssistant:
def __init__(self, model_name="model_here", device="cuda"):
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token_id = 11
self.tokenizer.eos_token_id = 128009
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)
self.model.generation_config.pad_token_id = self.tokenizer.pad_token_id
self.model.generation_config.eos_token_id = 128009
self.sys_message = '''
'''
# Divine Intellect preset parameters
self.temperature = 1.31
self.top_p = 0.14
self.epsilon_cutoff = 1.49
self.eta_cutoff = 10.42
self.repetition_penalty = 1.17
self.top_k = 49
def format_prompt(self, question):
messages = [
{"role": "system", "content": self.sys_message},
{"role": "user", "content": question}
]
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
return prompt
def recursive_reflection(self, initial_response, question, max_new_tokens=512):
reflection_prompt = f'''
Initial Response: {initial_response}
Reflect on the above response. Identify any inaccuracies, weaknesses, or areas for improvement.
If the response is strong, justify why it is valid. Otherwise, provide a revised and improved version.
User Question: {question}
'''
inputs = self.tokenizer(reflection_prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=self.temperature,
top_p=self.top_p,
repetition_penalty=self.repetition_penalty,
top_k=self.top_k,
eta_cutoff=self.eta_cutoff,
epsilon_cutoff=self.epsilon_cutoff,
do_sample=True,
use_cache=True
)
refined_answer = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
return refined_answer
def generate_response(self, question, max_new_tokens=512, enable_reflection=True):
# Generate the initial response
prompt = self.format_prompt(question)
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=self.temperature,
top_p=self.top_p,
repetition_penalty=self.repetition_penalty,
top_k=self.top_k,
eta_cutoff=self.eta_cutoff,
epsilon_cutoff=self.epsilon_cutoff,
do_sample=True,
use_cache=True
)
initial_response = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
# Perform recursive self-reflection if enabled
if enable_reflection:
return self.recursive_reflection(initial_response, question, max_new_tokens)
else:
return initial_response
Key Features
- Multi-Model Integration: Combines the expertise of several specialized models to excel in reasoning, creativity, and conversational capabilities.
- Balanced Density and Weighting: Ensures that no single model dominates the final output, leading to coherent and well-rounded responses.
- Optimized Generation Parameters: Pre-tuned for superior performance with the Divine Intellect preset.
- Ease of Use: Simplified setup and execution for efficient utilization.
License
Released under the Llama 3.1 Community License.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 19.78 |
IFEval (0-Shot) | 33.42 |
BBH (3-Shot) | 32.51 |
MATH Lvl 5 (4-Shot) | 5.82 |
GPQA (0-shot) | 6.38 |
MuSR (0-shot) | 11.82 |
MMLU-PRO (5-shot) | 28.75 |
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for sethuiyer/Llamazing-3.1-8B-Instruct
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard33.420
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard32.510
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard5.820
- acc_norm on GPQA (0-shot)Open LLM Leaderboard6.380
- acc_norm on MuSR (0-shot)Open LLM Leaderboard11.820
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard28.750