metadata
library_name: transformers
tags:
- narration
- Truthful
base_model:
- sethuiyer/Llamaverse-3.1-8B-Instruct
model-index:
- name: Llamazing-3.1-8B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 33.42
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llamazing-3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.51
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llamazing-3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 5.82
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llamazing-3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.38
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llamazing-3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 11.82
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llamazing-3.1-8B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.75
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sethuiyer/Llamazing-3.1-8B-Instruct
name: Open LLM Leaderboard
Llamazing-3.1-8B-Instruct
Overview
Llamazing-3.1-8B-Instruct balances reasoning, creativity, and conversational capabilities to deliver exceptional performance across various applications.
Usage
The following Python code demonstrates how to use Llamazing-3.1-8B-Instruct with the Divine Intellect preset:
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
class LlamazingAssistant:
def __init__(self, model_name="model_here", device="cuda"):
self.device = device
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
if self.tokenizer.pad_token_id is None:
self.tokenizer.pad_token_id = 11
self.tokenizer.eos_token_id = 128009
self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)
self.model.generation_config.pad_token_id = self.tokenizer.pad_token_id
self.model.generation_config.eos_token_id = 128009
self.sys_message = '''
'''
# Divine Intellect preset parameters
self.temperature = 1.31
self.top_p = 0.14
self.epsilon_cutoff = 1.49
self.eta_cutoff = 10.42
self.repetition_penalty = 1.17
self.top_k = 49
def format_prompt(self, question):
messages = [
{"role": "system", "content": self.sys_message},
{"role": "user", "content": question}
]
prompt = self.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
return prompt
def recursive_reflection(self, initial_response, question, max_new_tokens=512):
reflection_prompt = f'''
Initial Response: {initial_response}
Reflect on the above response. Identify any inaccuracies, weaknesses, or areas for improvement.
If the response is strong, justify why it is valid. Otherwise, provide a revised and improved version.
User Question: {question}
'''
inputs = self.tokenizer(reflection_prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=self.temperature,
top_p=self.top_p,
repetition_penalty=self.repetition_penalty,
top_k=self.top_k,
eta_cutoff=self.eta_cutoff,
epsilon_cutoff=self.epsilon_cutoff,
do_sample=True,
use_cache=True
)
refined_answer = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
return refined_answer
def generate_response(self, question, max_new_tokens=512, enable_reflection=True):
# Generate the initial response
prompt = self.format_prompt(question)
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=self.temperature,
top_p=self.top_p,
repetition_penalty=self.repetition_penalty,
top_k=self.top_k,
eta_cutoff=self.eta_cutoff,
epsilon_cutoff=self.epsilon_cutoff,
do_sample=True,
use_cache=True
)
initial_response = self.tokenizer.batch_decode(outputs, skip_special_tokens=True)[0].strip()
# Perform recursive self-reflection if enabled
if enable_reflection:
return self.recursive_reflection(initial_response, question, max_new_tokens)
else:
return initial_response
Key Features
- Multi-Model Integration: Combines the expertise of several specialized models to excel in reasoning, creativity, and conversational capabilities.
- Balanced Density and Weighting: Ensures that no single model dominates the final output, leading to coherent and well-rounded responses.
- Optimized Generation Parameters: Pre-tuned for superior performance with the Divine Intellect preset.
- Ease of Use: Simplified setup and execution for efficient utilization.
License
Released under the Llama 3.1 Community License.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 19.78 |
IFEval (0-Shot) | 33.42 |
BBH (3-Shot) | 32.51 |
MATH Lvl 5 (4-Shot) | 5.82 |
GPQA (0-shot) | 6.38 |
MuSR (0-shot) | 11.82 |
MMLU-PRO (5-shot) | 28.75 |