|
## Multiple Prediction Heads |
|
* ExtractiveQA Head |
|
* Three Class Classification Head, classes => (yes, no, extra_qa) to answer binary questions or direct to ExtractiveQA Head |
|
|
|
## BoolQ Validation dataset Evaluation: <br/> |
|
support => 3270 <br/> |
|
accuracy => 0.73 <br/> |
|
macro f1 => 0.71 |
|
|
|
## SQuAD Validation dataset Evaluation: <br/> |
|
eval_HasAns_exact = 78.0196 <br/> |
|
eval_HasAns_f1 = 84.0327 <br/> |
|
eval_HasAns_total = 5928 <br/> |
|
eval_NoAns_exact = 81.8167 <br/> |
|
eval_NoAns_f1 = 81.8167 <br/> |
|
eval_NoAns_total = 5945 <br/> |
|
eval_best_exact = 79.9208 <br/> |
|
eval_best_f1 = 82.9231 <br/> |
|
eval_exact = 79.9208 <br/> |
|
eval_f1 = 82.9231 <br/> |
|
eval_samples = 12165 <br/> |
|
eval_total = 11873 |
|
|
|
## Uasge in transformers |
|
Import the script from [here](https://huggingface.co/shahrukhx01/roberta-base-squad2-boolq-baseline/blob/main/multitask_model.py) |
|
```python |
|
from multitask_model import RobertaForMultitaskQA |
|
from transformers import RobertaTokenizerFast |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = RobertaForMultitaskQA.from_pretrained( |
|
"shahrukhx01/roberta-base-squad2-boolq-baseline", |
|
task_labels_map={"squad_v2": 2, "boolq": 3}, |
|
).to(device) |
|
tokenizer = RobertaTokenizerFast.from_pretrained("shahrukhx01/roberta-base-squad2-boolq-baseline") |
|
``` |