librarian-bot's picture
Librarian Bot: Add base_model information to model
1e951f6
|
raw
history blame
3 kB
metadata
license: apache-2.0
tags:
  - generated_from_keras_callback
base_model: silviacamplani/distilbert-finetuned-dapt_tapt-lm-ai
model-index:
  - name: silviacamplani/distilbert-finetuned-dapt_tapt-ner-music
    results: []

silviacamplani/distilbert-finetuned-dapt_tapt-ner-music

This model is a fine-tuned version of silviacamplani/distilbert-finetuned-dapt_tapt-lm-ai on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.6073
  • Validation Loss: 0.7078
  • Train Precision: 0.5337
  • Train Recall: 0.5986
  • Train F1: 0.5643
  • Train Accuracy: 0.8344
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 1e-05, 'decay_steps': 370, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
  • training_precision: mixed_float16

Training results

Train Loss Validation Loss Train Precision Train Recall Train F1 Train Accuracy Epoch
2.6231 2.0072 0.0 0.0 0.0 0.5482 0
1.7195 1.5337 0.1905 0.0072 0.0139 0.5597 1
1.3447 1.2423 0.3073 0.3510 0.3277 0.6910 2
1.1065 1.0569 0.4162 0.4536 0.4341 0.7195 3
0.9326 0.9225 0.5050 0.5473 0.5253 0.7689 4
0.8061 0.8345 0.5306 0.5770 0.5528 0.8011 5
0.7118 0.7749 0.5292 0.5878 0.5569 0.8176 6
0.6636 0.7366 0.5314 0.5950 0.5614 0.8242 7
0.6284 0.7158 0.5330 0.5968 0.5631 0.8321 8
0.6073 0.7078 0.5337 0.5986 0.5643 0.8344 9

Framework versions

  • Transformers 4.20.1
  • TensorFlow 2.6.4
  • Datasets 2.1.0
  • Tokenizers 0.12.1