|
# Dialog-KoELECTRA |
|
|
|
Github : [https://github.com/skplanet/Dialog-KoELECTRA](https://github.com/skplanet/Dialog-KoELECTRA) |
|
|
|
## Introduction |
|
|
|
**Dialog-KoELECTRA** is a language model specialized for dialogue. It was trained with 22GB colloquial and written style Korean text data. Dialog-ELECTRA model is made based on the [ELECTRA](https://openreview.net/pdf?id=r1xMH1BtvB) model. ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a [GAN](https://arxiv.org/pdf/1406.2661.pdf). At small scale, ELECTRA achieves strong results even when trained on a single GPU. |
|
|
|
<br> |
|
|
|
## Released Models |
|
|
|
We are initially releasing small version pre-trained model. |
|
The model was trained on Korean text. We hope to release other models, such as base/large models, in the future. |
|
|
|
| Model | Layers | Hidden Size | Params | Max<br/>Seq Len | Learning<br/>Rate | Batch Size | Train Steps | |
|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | |
|
| Dialog-KoELECTRA-Small | 12 | 256 | 14M | 128 | 1e-4 | 512 | 700K | |
|
|
|
<br> |
|
|
|
## Model Performance |
|
|
|
Dialog-KoELECTRA shows strong performance in conversational downstream tasks. |
|
|
|
| | **NSMC**<br/>(acc) | **Question Pair**<br/>(acc) | **Korean-Hate-Speech**<br/>(F1) | **Naver NER**<br/>(F1) | **KorNLI**<br/>(acc) | **KorSTS**<br/>(spearman) | |
|
| :--------------------- | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | |
|
| DistilKoBERT | 88.60 | 92.48 | 60.72 | 84.65 | 72.00 | 72.59 | |
|
| **Dialog-KoELECTRA-Small** | **90.01** | **94.99** | **68.26** | **85.51** | **78.54** | **78.96** | |
|
|
|
<br> |
|
|
|
## Train Data |
|
|
|
|
|
<table class="tg"> |
|
<thead> |
|
<tr> |
|
<th class="tg-c3ow"></th> |
|
<th class="tg-c3ow">corpus name</th> |
|
<th class="tg-c3ow">size</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td class="tg-c3ow" rowspan="4">dialog</td> |
|
<td class="tg-0pky"><a href="https://aihub.or.kr/aidata/85" target="_blank" rel="noopener noreferrer">Aihub Korean dialog corpus</a></td> |
|
<td class="tg-c3ow" rowspan="4">7GB</td> |
|
</tr> |
|
<tr> |
|
<td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Spoken corpus</a></td> |
|
</tr> |
|
<tr> |
|
<td class="tg-0pky"><a href="https://github.com/songys/Chatbot_data" target="_blank" rel="noopener noreferrer">Korean chatbot data</a></td> |
|
</tr> |
|
<tr> |
|
<td class="tg-0pky"><a href="https://github.com/Beomi/KcBERT" target="_blank" rel="noopener noreferrer">KcBERT</a></td> |
|
</tr> |
|
<tr> |
|
<td class="tg-c3ow" rowspan="2">written</td> |
|
<td class="tg-0pky"><a href="https://corpus.korean.go.kr/" target="_blank" rel="noopener noreferrer">NIKL Newspaper corpus</a></td> |
|
<td class="tg-c3ow" rowspan="2">15GB</td> |
|
</tr> |
|
<tr> |
|
<td class="tg-0pky"><a href="https://github.com/lovit/namuwikitext" target="_blank" rel="noopener noreferrer">namuwikitext</a></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
<br> |
|
|
|
## Vocabulary |
|
|
|
We applied morpheme analysis using [huggingface_konlpy](https://github.com/lovit/huggingface_konlpy) when creating a vocabulary dictionary. |
|
As a result of the experiment, it showed better performance than a vocabulary dictionary created without applying morpheme analysis. |
|
<table> |
|
<thead> |
|
<tr> |
|
<th>vocabulary size</th> |
|
<th>unused token size</th> |
|
<th>limit alphabet</th> |
|
<th>min frequency</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>40,000</td> |
|
<td>500</td> |
|
<td>6,000</td> |
|
<td>3</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
<br> |
|
|